

Locutus CP-1600X

Instruction Set

Extensions

V1.0

3-Dec-2019, A

Copyright © 2019 — Joseph Zbiciak — Left Turn Only

Background 8

Design Goals 8

High Level Goals 8

Constraints / Anti-Goals 9

Technical Background 9

CP-1600 Instruction Set Format Summary 9

Opcode field key 10

Conditional branch codes 10

CP-1600 Instruction Extension Opportunities 11

10 Bit Opcodes 11

Direct Addressing 11

MVOI - MoVe Out Immediate 12

CP-1600X Instruction Set Extension Summary 13

Extended Register Set 13

Register Pairs 14

The PV Register 14

Extended Addressing Modes 15

Extended Addressing Modes 15

Opcode Encoding 15

Opcode Field Definitions 15

Assembler Aliases for Native Modes: amode = 00b, extreg = 000b 15

Effective Address Mode: amode = 00b, extreg ≠ 000b, opcode ≠ MVO 16

Three Operand Add: amode = 00b, extreg ≠ 000b, opcode = MVO 16

Special Operations: amode = 00b, extreg ≠ 000b, reg = 111b 16

Indirect-Indexed Modes: amode = 01b 17

Indirect Post-Increment, Post-Decrement: amode = 10b 17

Indirect Pre-Increment, Pre-Decrement: amode = 11b 18

Example Encodings For Extended Addresses 18

Atomic Instructions 19

Opcode Encoding 19

Operation 19

Atomic Add Example 19

Extended Register-to-Register Instructions 20

Numeric Formats 20

Integer Formats 20

Fixed Point Formats 20

BCD Formats 21

Opcode Formats 21

Base MVOI Opcode Template 22

Opcode Formats 22

Operand Types and Encoding 23

Opcode Set A 24

Opcode Set B 28

Opcode Set C 28

Instruction Descriptions 28

ADD3, opcodeA = 00000000b, S = 0 28

NADD, opcodeA = 00000000b, S = 1 28

ADDFX, opcodeA = 00000001b, S = 0 28

NADDFX, opcodeA = 00000001b, S = 1 29

SUB3, opcodeA = 00000010b 29

SUBFX, opcodeA = 00000011b 29

AND3, opcodeA = 00000100b, S = 0 29

NAND, opcodeA = 00000100b, S = 1 29

ANDN, opcodeA = 00000101b, S = 0 30

ORN, opcodeA = 00000101b, S = 1 30

OR3, opcodeA = 00000110b, S = 0 30

NOR, opcodeA = 00000110b, S = 1 30

XOR3, opcodeA = 00000111b, S = 0 30

XNOR, opcodeA = 00000111b, S = 1 30

SHL3, opcodeA = 00001000b 31

SHLU3, opcodeA = 00001001b 31

SHR3, opcodeA = 00001010b 31

SHRU3, opcodeA = 00001011b 31

BSHLU, opcodeA = 00001100b 32

BSHRU, opcodeA = 00001101b 32

ROL, opcodeA = 00001110b 32

ROR, opcodeA = 00001111b 32

BITCNTL, opcodeA = 00010000b 33

BITCNTR, opcodeA = 00010000b 33

BITREVL, opcodeA = 00010010b 33

BITREVR, opcodeA = 00010011b 34

LMO, opcodeA = 00010100b 35

LMZ, opcodeA = 00010101b 35

RMO, opcodeA = 00010110b 35

RMZ, opcodeA = 00010111b 36

REPACK, opcodeA = 00011000b 36

PACKL, opcodeA = 00011001b 36

PACKH, opcodeA = 00011010b 36

PACKLH, opcodeA = 00011011b 36

BTOG, opcodeA = 00011100b 37

BSET, opcodeA = 00011101b 37

BCLR, opcodeA = 00011110b 37

CMPEQ, opcodeA = 00011111b, S = 0 37

CMPNE, opcodeA = 00011111b, S = 1 37

CMPLTU / CMPGTU, opcodeA = 00100000b 37

CMPLTFXU / CMPGTFXU, opcodeA = 00100001b 38

CMPLEU / CMPGEU, opcodeA = 00100010b 38

CMPLEFXU / CMPGEFXU, opcodeA = 00100011b 38

CMPLTU& / CMPGTU&, opcodeA = 00100100b 38

CMPLTFXU& / CMPGTFXU&, opcodeA = 00100101b 38

CMPLEU& / CMPGEU&, opcodeA = 00100110b 39

CMPLEFXU& / CMPGEFXU&, opcodeA = 00100111b 39

CMPLT / CMPGT, opcodeA = 00101000b 39

CMPLTFX / CMPGTFX, opcodeA = 00101001b 39

CMPLE / CMPGE, opcodeA = 00101010b 39

CMPLEFX / CMPGEFX, opcodeA = 00101011b 40

CMPLT& / CMPGT&, opcodeA = 00101100b 40

CMPLTFX& / CMPGTFX&, opcodeA = 00101101b 40

CMPLE& / CMPGE&, opcodeA = 00101110b 40

CMPLEFX& / CMPGEFX&, opcodeA = 00101111b 40

MIN, opcodeA = 00110000b, S = 0 41

MINU, opcodeA = 00110000b, S = 1 41

MINFX, opcodeA = 00110001b, S = 0 41

MINFXU, opcodeA = 00110001b, S = 1 41

MAX, opcodeA = 00110010b, S = 0 41

MAXU, opcodeA = 00110010b, S = 1 41

MAXFX, opcodeA = 00110011b, S = 0 42

MAXFXU, opcodeA = 00110011b, S = 1 42

BOUND, opcodeA = 00110100b, S = 0 42

BOUNDU, opcodeA = 00110100b, S = 1 42

BOUNDFX, opcodeA = 00110101b, S = 0 42

BOUNDFXU, opcodeA = 00110101b, S = 1 43

ADDCIRC, opcodeA = 00110110b 43

SUBCIRC, opcodeA = 00110111b 43

ATAN2, opcodeA = 00111000b 44

ATAN2FX, opcodeA = 00111001b 45

SUBABS, opcodeA = 00111010b, S = 0 46

SUBABSU, opcodeA = 00111010b, S = 1 46

SUBABSFX, opcodeA = 00111011b, S = 0 46

SUBABSFXU, opcodeA = 00111011b, S = 1 46

DIST, opcodeA = 00111100b, S = 0 47

DISTU, opcodeA = 00111100b, S = 1 47

DISTFX, opcodeA = 00111101b, S = 0 47

DISTFXU, opcodeA = 00111101b, S = 1 47

SUMSQ, opcodeA = 00111110b, S = 0 48

SUMSQU, opcodeA = 00111110b, S = 1 48

SUMSQFX, opcodeA = 00111111b, S = 0 48

SUMSQFXU, opcodeA = 00111111b, S = 1 48

MPYSS, opcodeA = 01000000b, S = 0 49

MPYUU, opcodeA = 01000000b, S = 1 49

MPYFXSS, opcodeA = 01000001b, S = 0 49

MPYFXUU, opcodeA = 01000001b, S = 1 49

MPYSU, opcodeA = 01000010b 49

MPYFXSU, opcodeA = 01000011b 50

MPYUS, opcodeA = 01000100b 50

MPYFXUS, opcodeA = 01000101b 50

MPY16, opcodeA = 01000110b 50

ISQRT, opcodeA = 01000111b, S = 0 51

ISQRTFX, opcodeA = 01000111b, S = 1 51

AAL, opcodeA = 01001000b 51

AAH, opcodeA = 01001001b 51

DIVS, opcodeA = 01001010b 51

DIVFXS, opcodeA = 01001011b 52

DIVU, opcodeA = 01001100b 52

DIVFXU, opcodeA = 01001101b 52

DIV32S, opcodeA = 01001110b, S = 0 53

DIV32U, opcodeA = 01001111b, S = 0 53

ADDS, opcodeA = 01010000b, S = 0 54

ADDU, opcodeA = 01010000b, S = 1 54

ADDH, opcodeA = 01010001b, S = 0 54

ADDM, opcodeA = 01010001b, S = 1 55

SUBS, opcodeA = 01010010b 55

SUBU, opcodeA = 01010011b 55

SUBM, opcodeA = 01010100b 56

SUBH, opcodeA = 01010101b 56

DMOV, opcodeA = 01010110b 56

ADDSUB, opcodeA = 01010111b 56

ABCD, opcodeA = 01011000b, S = 0 56

ABCDL, opcodeA = 01011000b, S = 1 57

ABCDH, opcodeA = 01011001b, S = 0 57

ABCM, opcodeA = 01011001b, S = 1 57

SBCD, opcodeA = 01011010b 57

SBCDL, opcodeA = 01011011b 58

SBCM, opcodeA = 01011100b 58

SBCDH, opcodeA = 01011101b 58

I2BCD, opcodeA = 01011110b 58

BCD2I, opcodeA = 01011111b 59

CMPEQ&, opcodeA = 01100000b, S = 0 60

CMPNE&, opcodeA = 01100000b, S = 1 60

Extended Conditional Branches 61

Opcode Field Definitions 61

TSTBNZ / DECBNZ 62

TXSER / RXSER 62

Programmer’s Guide 63

Extended Precision Addition and Subtraction 63

Extended Precision Integer Addition 63

Extended Precision Integer Subtraction 64

Extended Precision BCD Addition and Subtraction 64

Revision History 66

Background
The Locutus CP-1600X Instruction Set transparently extends the base instruction set of the General

Instrument CP-1600 and CP-1610 processors for programs running on a Locutus cartridge. A future

revision of JLP may also incorporate these instructions. The instruction set is also implemented in jzIntv.

Previously, JLP and jzIntv provided memory-mapped acceleration for multiplies, divides, CRCs, and

random number generation. The CP-1600X represents a more tightly integrated approach, leveraging

various unique aspects of the CP-1600 instruction set and implementation. The resulting extensions

look, feel, and behave more like instructions, and less like memory-mapped accelerators.

The CP-1600X extensions were inspired in part by the phantom, vaporware CP-1620 coprocessor,

documented in various early CP-1600 and GIMINI manuals. It was intended to extend the CP-1600

instruction set, similar to how an 8087 extends an 8086. As far as I can tell, this chip never materialized.

Design Goals

High Level Goals

● 100% compatibility with existing CP-1600 machine code.

○ Provided that bits 15:10 of the primary opcode word are zero, as recommended by GI,

and as implemented in most (all?) assemblers currently in use.

● Seamless extension of existing instructions, such as:

○ Enhanced addressing modes.

○ Extended register set.

● Similar cost to native instructions, both in size and speed.

○ A 16⨉16 multiply on JLP requires two MVO s and at least one MVI .

■ That takes a minimum of 26 cycles, and more likely 32 cycles.

■ That costs 3 to 6 instruction words.

■ ~10 cycles and 1-2 instruction words is a more reasonable target.

○ JLP instructions suffer interrupt atomicity issues.

■ This can be solved for 16-bit results, but 32-bit results require masking

interrupts or constraining how the instructions get used:

e.g. MVO ; MVO ; MVI is safe. MVO ; MVO ; MVI ; MVI is not. Why? MVO is

non-interruptible but MVI is. 1

● Fits with overall feel of CP-1600 while providing useful functions for video games.

1 Non-interruptible means no interrupt can be taken between that instruction and the one that follows it.

Constraints / Anti-Goals

● Must not require internal modifications to the original unit. All operations must be available via

a hardware cartridge plugged into a standard Intellivision cartridge port.

● Should not require rewriting any of the bus phase signals—e.g. generating different

BC1_OUT/BC2_OUT/BDIR_OUT as compared to BC1_IN/BC2_IN/BDIR_IN—to maximize

compatibility across Intellivision versions and Intellivision peripherals.

● Must not be over the top : It’s possible to implement a program entirely in an external machine,

using the Intellivision solely for access to the controllers and display. That is explicitly an

anti-goal . These instructions should feel like coprocessor extensions that would be reasonable

circa 1984.

● It’s OK if the additional instructions are only available to code that executes from Locutus or

other specialized cartridges. That is, code running from Intellivision RAM does not have access

to the extended instructions.

Technical Background

CP-1600 Instruction Set Format Summary

Format Words Description

0 000 000 0oo 1 Implied 1-op instructions

0 000 000 100 bb pppppp ii pppppppppp 3 Jump instructions

0 000 000 1oo 1 Implied 1-op instructions

0 000 ooo ddd 1 1-op src/dst instructions

0 000 110 0dd 1 GSWD

0 000 110 1om 1 NOP , SIN

0 001 ooo mrr 1 Rotate / shift instructions

0 ooo sss ddd 1 2-op arithmetic, reg-to-reg

1 000 zxc ccc 16-bit offset 2 Branch instructions

1 ooo 000 ddd 16-bit address 2 2-op arithmetic, direct mode

1 ooo mmm ddd 1 2-op arithmetic, indirect mode

1 ooo 111 ddd 16-bit immediate 2 2 2-op arithmetic, immediate mode

2 2 words for the immediate value (3 words total) if instruction is preceded by SDBD , with the immediate in bits
0..7 of each word.

Opcode field key

oo Opcode field (meaning depends on format)

sss Source register (R0 to R7)

ddd Destination register (R0 to R7)

0dd Destination register (R0 to R3)

cccc Branch condition code (table below)

x External branch condition (0 = internal, 1 = external)

z Branch displacement direction (1 = negative)

m Shift amount (0 = shift by 1; 1 = shift by 2)

bb Branch return register (00 = R4 , 01 = R5 , 10 = R6 , 11 = None)

ii Branch interruptibility flag (00 = No Change, 01 = EIS , 10 = DIS , 11 = Reserved)

Conditional branch codes

 n = 0 n = 1

n000 Always Never

n001 Carry set / Unsigned Greater or Equal Carry clear / Unsigned Less Than

n010 Overflow set Overflow clear

n011 Positive (S = 0) Negative (S = 1)

n100 Equal (Z = 1) Not equal (Z = 0)

n101 Signed less than Signed greater than or equal

n110 Signed less than or equal Signed greater than

n111 Unequal sign and carry (S ≠ C) Equal sign and carry (S = C)

CP-1600 Instruction Extension Opportunities

10 Bit Opcodes

The CP-1600 ignores bits 10 through 15 of the first word of every instruction. The canonical encoding for

each CP-1600 instruction places zeros in these 6 bits. Thus, if these bits are non-zero, the CPU will

execute the instruction as if the upper bits are 0. External hardware can interpret those bits, however,

and use that information to curate the CPU’s view of the system.

Direct Addressing

The CP-1600 bus protocol supports a rather unique bus phase: ADAR , Addressed Data to Address

Register. Instructions that use direct addressing use the ADAR bus phase to access the corresponding

operand.

Direct addressing instructions look similar to indirect-addressing instructions, except that they specify R0

as the indirect address register. The CP-1600 knows to interpret this as a direct-address instruction. The

resulting access pattern differs as follows for instructions that read, and do not use SDBD .

 Indirect Mode Direct Mode

Cycle
Bus

Phase
Description

Bus
Phase

Description

1 BAR Address of instruction BAR Address of instruction

2 NACT No action NACT No action

3 DTB Fetch instruction DTB Fetch instruction

4 NACT No action NACT No action

5 BAR
Address of operand from
register

BAR
Address of operand following
instruction

6 NACT No action NACT No action

7 DTB Read indirect operand ADAR
Read address of operand; latch as next
address similar to BAR

8 - NACT No action

9 - DTB Read direct operand

The MVO instruction proceeds similarly to other instructions, replacing the DTB bus phase with two

consecutive bus phases: DW and DWS .

In any case, external hardware has the opportunity to modify the address presented during ADAR before

the CPU and the system acts on it. And, for direct-mode instructions that target R7 , external hardware

can further synthesize interesting branch constructs.

And, more generally, even without ISA extensions, direct addressing allows external memory locations to

look a lot like registers, at least for the first operand of most instructions and the second operand of a

MVO instruction.

MVOI - MoVe Out Immediate

If you look carefully at the instruction encodings, it becomes apparent that the CP-1600 does not

actually implement an immediate mode for its core opcodes. Rather, it implements “indirect via the

program counter.” For most instructions, the difference is meaningless: The CPU fetches the immediate

operand via R7 , incrementing it as necessary.

For MVO , however, it’s a bit different. MVO@ …, R7 stores the contents of a register at the address

following an instruction. The General Instrument documentation calls the resulting instruction MVOI :

“MoVe Out, Immediate.” For programs stored in ROM, this instruction is essentially useless. For

programs stored in RAM, it might be useful; however, in practice, its usefulness is limited.

For Locutus’ CP-1600X, MVOI presents a great opportunity:

● It writes the current value of a register onto the bus.

● The CPU ignores the upper 6 bits of the opcode for the MVOI .

● The CPU ignores the contents of the 16-bit word that follows the MVOI .

● Because it is a MVO instruction, it is also uninterruptible.

● Writes provide two bus phases for write data— DW and DWS —which potentially translates into

more time for computation.

Ultimately, this provides a great expansion mechanism with the following properties:

● 22 bits of expansion opcode.

● Fast access to one of the CP-1600’s internal registers as an argument.

● An additional bus cycle for computation.

● Non-interruptible, enabling support for certain atomic operations.

CP-1600X Instruction Set Extension Summary
The Locutus CP-1600X Instruction Set provides the following extensions:

● Extended registers X0 through XF and PV .

● Extended addressing modes for the core CP-1600 instruction set: MVO , MVI , ADD , SUB , CMP , AND ,

and XOR .

● Atomic operation support.

● Extended register-to-register instructions.

● Specialized branching and looping instructions.

Extended Register Set

The CP-1600X provides 17 additional registers. These registers break down into three groups:

● X0 through X7 . These registers are available as address registers for extended addressing

modes, as well as extended register-to-register operations.

● X8 through XF . These registers are available to extended register-to-register operations.

● PV . This special register holds the previous value associated with certain extended operations.

It provides a key component of CP-1600X’s atomic operation support.

CP-1600X maps these registers into the CP-1600 address space. That allows direct-mode CP-1600

instructions to treat the additional registers similarly to native registers, subject to the restrictions of

direct addressing operands.

Register Address Register Address

X0 $9F90 X8 $9F98

X1 $9F91 X9 $9F99

X2 $9F92 XA $9F9A

X3 $9F93 XB $9F9B

X4 $9F94 XC $9F9C

X5 $9F95 XD $9F9D

X6 $9F96 XE $9F9E

X7 $9F97 XF $9F9F

 PV $9F8D

Register Pairs

Some instructions use a 32-bit register pair, referred to here in the instruction descriptions as

src_hi:src_lo or dst_hi:dst_lo.

 In the instruction itself, specify the lower numbered register of the pair. This becomes the ‘lo’ half of

the pair. The next higher numbered register becomes ‘hi’ half. For XF , the next higher numbered

register is X0 .

The PV Register

The PV register captures the previous contents of an extended register or memory location under the

following circumstances:

● An indirect write to Locutus memory (RAM, ROM, or WOM) with MVO@ , excluding extended

addressing modes.

● An atomic instruction that writes to Locutus memory (RAM, ROM, or WOM).

● An extended register-to-register instruction that writes to X0 through XF .

In each case, CP-1600X captures the previous value of the target location for the write into PV . For

extended register-to-register instructions that write to a pair of registers, PV captures dst_lo.

Extended Addressing Modes

CP-1600X provides extended addressing modes to the core 7 instructions: MVO , MVI , ADD , SUB , CMP ,

AND , and XOR . In addition to that, the extended address encoding enables four atomic operation

instructions: MVO (which behaves as an atomic exchange), ATADD , ATAND , and ATOR .

Extended Addressing Modes

The default macro package provides spellings for CP-1600X’s new addressing modes, in addition to

alternate spellings for CP-1600’s original addressing modes. The tables below list the full complement of

address modes and their spelling.

Opcode Encoding

The extended addressing modes build on CP-1600’s direct addressing mode. These instructions require

two words, and fit the following encoding:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 amode extreg 1 opcode 0 0 0 reg

offset

Opcode Field Definitions

Field Meaning

amode Addressing mode (see below).

extreg External register X0 through X7 . (000b = X0 , 111b = X7 , etc.)

opcode CP-1600 instruction opcode

reg Internal register R0 through R7 . (000b = R0 , 111b = R7 , etc.)

offset Address offset to apply in extended addressing modes (amode ≠ 0 or extreg ≠ 0)

Assembler Aliases for Native Modes: amode = 00b, extreg = 000b

Syntax Meaning Syntax Meaning

@R1 Indirect through R1 . @--R6 Indirect through R6 , pre-decrement.

@R2 Indirect through R2 . @--SP Alias for @--R6 .

@R3 Indirect through R3 . @R6++ Indirect through R6 , post-increment.

@R4++ Indirect through R4 , post-increment. @SP++ Alias for @R6++ .

@R5++ Indirect through R5 , post-increment. @R7++ Indirect through R7 , post-increment.

 @PC++ Alias for @R7++ .

Effective Address Mode: amode = 00b, extreg ≠ 000b, opcode ≠ MVO

These modes do not access memory; rather, they return the address computed as an immediate

operand, similar to the LEA instructions on 8086 and 68000.

Syntax Meaning Syntax Meaning

- X0 not supported in this mode. &X4(ofs) Return X4 + ofs as an immediate.

&X1(ofs) Return X1 + ofs as an immediate. &X5(ofs) Return X5 + ofs as an immediate.

&X2(ofs) Return X2 + ofs as an immediate. &X6(ofs) Return X6 + ofs as an immediate.

&X3(ofs) Return X3 + ofs as an immediate. &X7(ofs) Return X7 + ofs as an immediate.

Three Operand Add: amode = 00b, extreg ≠ 000b, opcode = MVO

The effective address mode doesn’t make much sense for MVO , as there’s no way to see the generated

effective address. Therefore, CP-1600X repurposes this encoding to implement a three operand add:

 ADD3x srcreg , immediate , extreg

This allows adding a 16-bit immediate value to a CPU register, storing the result in an extension register.

Restrictions :

● srcreg must be one of R0 through R7

● extreg must be one of X1 through X7

Special Operations: amode = 00b, extreg ≠ 000b, reg = 111b

The CP-1600X provides a family of Extended Conditional Branches . These are encoded as amode=00b

instructions that target R7 . The following table provides a summary.

Opcode
Original

Mnemonic
Extended ISA

Mnemonic
Description

001 MVO - No change / reserved.

010 MVI TSTBNZ Test Xreg and branch if non-zero.

011 ADD TXSER / RXSER Specialized serial transmit/receive with branch.

100 SUB - No change / reserved.

101 CMP - No change / reserved.

110 AND - No change / reserved.

111 XOR DECBNZ Decrement Xreg and branch if non-zero.

Indirect-Indexed Modes: amode = 01b

Syntax Meaning Syntax Meaning

@X0(ofs) Access location (X0 + ofs) @X4(ofs) Access location (X4 + ofs)

@X1(ofs) Access location (X1 + ofs) @X5(ofs) Access location (X5 + ofs)

@X2(ofs) Access location (X2 + ofs) @X6(ofs) Access location (X6 + ofs)

@X3(ofs) Access location (X3 + ofs) @X7(ofs) Access location (X7 + ofs)

Indirect Post-Increment, Post-Decrement: amode = 10b

Syntax Meaning Syntax Meaning

@X0++(ofs)
Access location (X0);
X0 ⟸ X0 + ofs

@X0--(ofs)
Access location (X0);
X0 ⟸ X0 - ofs

@X1++(ofs)
Access location (X1);
X1 ⟸ X1 + ofs

@X1--(ofs)
Access location (X1);
X1 ⟸ X1 - ofs

@X2++(ofs)
Access location (X2);
X2 ⟸ X2 + ofs

@X2--(ofs)
Access location (X2);
X2 ⟸ X2 - ofs

@X3++(ofs)
Access location (X3);
X3 ⟸ X3 + ofs

@X3--(ofs)
Access location (X3);
X3 ⟸ X3 - ofs

@X4++(ofs)
Access location (X4);
X4 ⟸ X4 + ofs

@X4--(ofs)
Access location (X4);
X4 ⟸ X4 - ofs

@X5++(ofs)
Access location (X5);
X5 ⟸ X5 + ofs

@X5--(ofs)
Access location (X5);
X5 ⟸ X5 - ofs

@X6++(ofs)
Access location (X6);
X6 ⟸ X6 + ofs

@X6--(ofs)
Access location (X6);
X6 ⟸ X6 - ofs

@X7++(ofs)
Access location (X7);
X7 ⟸ X7 + ofs

@X7--(ofs)
Access location (X7);
X7 ⟸ X7 - ofs

Indirect Pre-Increment, Pre-Decrement: amode = 11b

Syntax Meaning Syntax Meaning

@++X0(ofs)
Access location (X0 + ofs);
X0 ⟸ X0 + ofs

@--X0(ofs)
Access location (X0 - ofs);
X0 ⟸ X0 - ofs

@++X1(ofs)
Access location (X1 + ofs);
X1 ⟸ X1 + ofs

@--X1(ofs)
Access location (X1 - ofs);
X1 ⟸ X1 - ofs

@++X2(ofs)
Access location (X2 + ofs);
X2 ⟸ X2 + ofs

@--X2(ofs)
Access location (X2 - ofs);
X2 ⟸ X2 - ofs

@++X3(ofs)
Access location (X3 + ofs);
X3 ⟸ X3 + ofs

@--X3(ofs)
Access location (X3 - ofs);
X3 ⟸ X3 - ofs

@++X4(ofs)
Access location (X4 + ofs);
X4 ⟸ X4 + ofs

@--X4(ofs)
Access location (X4 - ofs);
X4 ⟸ X4 - ofs

@++X5(ofs)
Access location (X5 + ofs);
X5 ⟸ X5 + ofs

@--X5(ofs)
Access location (X5 - ofs);
X5 ⟸ X5 - ofs

@++X6(ofs)
Access location (X6 + ofs);
X6 ⟸ X6 + ofs

@--X6(ofs)
Access location (X6 - ofs);
X6 ⟸ X6 - ofs

@++X7(ofs)
Access location (X7 + ofs);
X7 ⟸ X7 + ofs

@--X7(ofs)
Access location (X7 - ofs);
X7 ⟸ X7 - ofs

Example Encodings For Extended Addresses

Recall the opcode format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 amode extreg 1 opcode 0 0 0 reg

offset

Here are some example encodings. Note that offset field is in decimal unless stated otherwise; other

fields are in binary.

Instruction 0 amode extreg 1 opcode 000 reg offset

MVI @X3++(1), R5 0 10 011 1 010 000 101 1

ADD3x R2, 42, X7 0 00 111 1 001 000 111 42

SUB &X6(123), R1 0 00 110 1 100 000 001 123

MVO R3, @--X2(5) 0 11 010 1 001 000 011 -5

MVO R4, @X2(4) 0 01 010 1 001 000 100 4

Atomic Instructions

The atomic instructions modify the behavior of MVO for indirect mode instructions. The atomic

instruction updates a value in memory atomically, and returns the previous value in the PV register.

Opcode Encoding

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

atomic opcode 1 MVO (001) dstreg 3 srcreg

Atomic Opcode Mnemonic Operation

000000 MVO PV ⟸ @dstreg; @dstreg ⟸ srcreg

000001 ATADD PV ⟸ @dstreg; @dstreg ⟸ @dstreg + srcreg

000010 ATAND PV ⟸ @dstreg; @dstreg ⟸ @dstreg & srcreg

000011 ATOR PV ⟸ @dstreg; @dstreg ⟸ @dstreg | srcreg

0001xx - 1xxxxx - Reserved.

Operation

These instructions behave similarly to MVO , in that the CPU writes to memory, and it treats the

instruction as non-interruptible. CP-1600X captures the previous value in memory (provided the write

targets memory controlled by Locutus) in the PV register.

Therefore, a complete atomic operation consists of an ATxxx instruction immediately followed by a MVI

instruction that captures PV into an internal register.

Atomic Add Example

 ATADD R1, @R2 ; Add value in R1 to value @R2; record previous value @R2 in PV.
 MVI PV, R3 ; Capture the previous value @R2 into R3.

3 Note: dstreg ≠ 000b .

Extended Register-to-Register Instructions

The CP-1600X provides a number of three-operand instructions that operate register-to-register. Most of

these instructions produce results in extended registers, but take arguments from both CPU and

extended registers. Because these instructions build on MVOI , these instructions are also

non-interruptible.

Numeric Formats

Many of the compute instructions are available in multiple flavors:

● Signed integer

● Unsigned integer

● Signed fixed point

● Unsigned fixed point

● Binary Coded Decimal (BCD)

Integer Formats

The signed and unsigned integer formats are fairly straightforward 2s complement formats.

Signed 16-bit integers have the range -32768 to 32767 (-0x8000 to 0x7FFF), and unsigned 16-bit integers

have the range 0 to 65535 (0x0000 to 0xFFFF). Signed and unsigned 32-bit integer formats are similar,

just extended to 32 bits.

Fixed Point Formats

The signed and unsigned fixed point formats are a little more interesting. Both fixed point formats are

16 bits, providing 8 fraction bits and 8 integer bits. The fixed-point formats are also rotated by 8 bits, so

that the integer portion is in bits 0 .. 7 and the fraction portion is in bits 8 .. 15. This corresponds to

IntyBASIC’s fixed point data type.

15 8 7 0

fraction integer

For example, the number 123.45, which is approximated as 7B.73 16 , would be stored as 0x737B in

CP-1600X’s fixed point format.

Fixed point instructions generally have an FX in their mnemonic.

BCD Formats

CP-1600X also supports both 16-bit and 32-bit unsigned BCD format, as well as the capability to extend

to multiples of 16 bits. The 16-bit BCD format divides a 16-bit word into four 4-bit fields, each holding a

single decimal digit. The 32-bit BCD format extends this to a second 16-bit word.

15 12 11 8 7 4 3 0

digit 3 digit 2 digit 1 digit 0

Traditional BCD formats typically assign bit patterns 0000 2 to 1001 2 to digits 0 through 9, and leave

1010 2 through 1111 2 as undefined.

CP-1600X, however, takes a different stance: Encodings 0000 2 through 1001 2 form canonical digits, and

each BCD computation will leave its digits in canonical form. However, on input, the instructions

consistently treat encodings 1010 2 through 1111 2 as having the values 10 through 15.

Thus, the hexadecimal value FFFF 16 behaves numerically as 15 · 1000 + 15 · 100 + 15 · 10 + 15 = 16665.

To support extended precision arithmetic, some BCD instructions produce a carry or borrow output that

can be consumed by other BCD instructions. Due to the nature of CP-1600X’s extended BCD range, this

carry/borrow output is a signed 3-bit number:

Encoding Value Encoding Value

000 +0 100 -4

001 +1 101 -3

010 +2 110 -2

011 +3 111 -1

In practice, CP-1600X only generates carry/borrow in the range [-2, +3]. The compute instructions

should perform as expected if you provide the full range as inputs. Instructions that consume BCD

carry/borrow information from a register only examine the 3 LSBs.

Opcode Formats

These instructions build upon the base MVOI opcode. CP-1600X looks at bits 0 - 2 and 10 - 15 of the

MVOI instruction itself, as well as all 16 bits of the word following the MVOI opcode. This creates a 25-bit

opcode space.

Base MVOI Opcode Template

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

opcode hi 1 0 0 1 1 1 1 reg

opcode lo

Opcode Formats

As bits 3 - 9 of the first word take a fixed value, the table below only considers bits 0 - 2 and 10 - 15 of

the first word, and all 16 bits of the second word.

 First Word
 Upper 6

First Word
Lower 3

Second Word

Format 15 10 2 0 15 8 7 4 3 0 Description

MVOI 0 0 0 0 0 0 src1r imm16 Native MVOI

Reserved 0 0 0 0 0 1 - - Reserved

r, x, x 0 0 0 0 1 S src1r opcodeA src2xr dstxr 3-register instruction

r, p4, x 0 0 0 1 0 S src1r opcodeA ucst4 dstxr Small positive constant

r, n4, x 0 0 0 1 1 S src1r opcodeA ~ucst4 dstxr Small negative constant

Reserved 0 1 0 x x x - - Reserved

PSHM
PULM

0 D 1 0 0 LS src1r Register Bitmap Push/pull multiple
Not implemented

x, x, x 0 X1 1 0 1 0 src1xr opcodeA src2xr dstxr 3-register, all X regs.

x, p4, x 0 X1 1 1 0 0 src1xr opcodeA ucst4 dstxr Small positive constant

x, n4, x 0 X1 1 1 1 0 src1xr opcodeA ~ucst4 dstxr Small negative constant

Long
Immediate

1 opC dstxr src1r imm16 Long immediate;
Not implemented.

Term Meaning

src1r First input operand, one of R0 .. R7

src1xr First input operand, one of X0 .. XF ; combines with X1 field.

X1 Additional bit for src1xr

src2xr Second operand, one of X0 .. XF

ucst4 Unsigned 4-bit constant, 0x0000 .. 0x000F

~ucst4 Inverted unsigned 4-bit constant, 0xFFFF .. 0xFFF0

dstxr
Destination register, one of X0 .. XF .
Some instructions write 32-bit results to dstxr and dstxr + 1.

opcodeA Opcode from set A.

opC Opcode from set C.

S
“Swap”/”Secondary” bit. For non-commutative operations, this swaps src1 and src2.
For commutative operations, this selects an alternate, related operation.

imm16 16-bit immediate value

x Extended register, one of X0 .. XF

r Native register, one of R0 .. R7

p4 Positive 4-bit constant; equivalent to ucst4.

n4 Negative 4-bit constant; equivalent to ~ucst4.

LS Load/Store. Distinguishes between PULM and PSHM.

D Direction flag. Distinguishes between post-increment and pre-decrement.

Operand Types and Encoding

Most Extended Register-to-Register operations accept three operands.

The first operand (src1) is always either a native register (R0 .. R7), or an extended register (X0 .. XF).

The first operand is always encoded in bits 0 .. 2 of the first word of the instruction. For extended

operands, bit 14 provides an additional bit for the register number.

The second operand (src2) is always either an extended register (X0 .. XF), or a signed 5-bit constant.

Due to encoding constraints, the signed 5-bit constant is actually represented as two separate opcode

spaces: One with an unsigned 4-bit constant, and one with an inverted 4-bit constant. This is equivalent

to a signed 5-bit constant, with the sign bit encoded in bit 11 of the opcode.

The third operand (dst) is always an extended register (X0 .. XF). This register’s value gets copied to PV

prior to executing the operation. In some cases, such as the CMPxx& instructions, the destination

register also acts as a source operand. For instructions with 32-bit results, CP-1600X writes two

registers, and dst indicates the lower-numbered register of the pair.

The S bit, which means either Swap or Secondary, modifies the operands as follows:

● For non-commutative operations, such as subtract, setting S = 1 swaps src1 and src2 internally

before performing the operation. This enables you to perform both X0 = R1 - X2 and X0 =

X2 - R1 , for example.

● For commutative operations, such as addition, setting S = 1 selects an alternate, or secondary

operation. For example, in the case of ADD, S = 1 selects NADD, which performs -(src1 + src2).

The opcode table indicates which opcodes interpret S as Swap vs. Secondary,

Opcode Set A

At present, this is the only opcode set CP-1600X implements. The following table summarizes the

assigned opcodes. See the individual instruction descriptions for detailed information on each.

Opcode
Mnemonic

(S=0)
Mnemonic

(S=1)
Description

00000000 ADD3 NADD Addition. S = 1 negates result.

00000001 ADDFX NADDFX Addition, fixed-point. S = 1 negates result.

00000010 SUB3 Subtraction

00000011 SUBFX Subtraction, fixed-point

00000100 AND3 NAND Bitwise AND. S = 1 inverts result.

00000101 ANDN ORN Bitwise AND w/ src2 negated. S = 1 inverts result.

00000110 OR3 NOR Bitwise OR. S = 1 inverts result.

00000111 XOR3 XNOR Bitwise XOR. S = 1 inverts result.

00001000 SHL3 Shift 16-bit signed value left into 32-bit result

00001001 SHLU3 Shift 16-bit unsigned value left into 32-bit result

00001010 SHR3 Shift 16-bit signed value right into 32-bit result

00001011 SHRU3 Shift 16-bit unsigned value right into 32-bit result

00001100 BSHLU Byte-masked left shift; 2nd reg gets shifted-away bits

00001101 BSHRU Byte-masked right shift; 2nd reg gets shifted-away bits

00001110 ROL Rotate left

00001111 ROR Rotate right

00010000 BITCNTL / BITCNT 4 Count 1 bits in the ‘src2 + 1’ MSBs of src1

00010001 BITCNTR Count 1 bits in the ‘src2 + 1’ LSBs of src1

00010010 BITREVL / BITREV 3 Bit reverse upper ‘src2 + 1’ bits of src1 into dst

00010011 BITREVR Bit reverse lower ‘src2 + 1’ bits of src1 into dst

00010100 LMO Find leftmost 1 in src1 at or below bit # in src2

00010101 LMZ Find leftmost 0 in src1 at or below bit # in src2

00010110 RMO Find rightmost 1 in src1 at or above bit # in src2

00010111 RMZ Find rightmost 0 in src1 at or above bit # in src2

4 BITCNT and BITREV are aliases for BITCNTL and BITREVL that operate on the full word.

00011000 REPACK 32-bit output: PACKH and PACKL

00011001 PACKL dst = (LSB src1) << 8 | (LSB src2)

00011010 PACKH dst = (MSB src1) << 8 | (MSB src2)

00011011 PACKLH dst = (LSB src1) << 8 | (MSB src2)

00011100 BTOG Toggle bit #src2 in src1, writing to dst

00011101 BSET Set bit #src2 in src1, writing to dst

00011110 BCLR Clear bit #src2 in src1, writing to dst

00011111 CMPEQ CMPNE dst = src1 == src2 ? -1 : 0; S=1 inverts result

00100000 CMPLTU / CMPGTU dst = src1 < src2 ? -1 : 0, unsigned

00100001 CMPLTFXU / CMPGTFXU dst = src1 < src2 ? -1 : 0, unsigned fixed-point

00100010 CMPLEU / CMPGEU dst = src1 <= src2 ? -1 : 0, unsigned

00100011 CMPLEFXU / CMPGEFXU dst = src1 <= src2 ? -1 : 0, unsigned fixed-point

00100100 CMPLTU& / CMPLTU& dst &= src1 < src2 ? -1 : 0, unsigned

00100101 CMPLTFXU& / CMPLTFXU& dst &= src1 < src2 ? -1 : 0, unsigned fixed-point

00100110 CMPLEU& / CMPLEU& dst &= src1 <= src2 ? -1 : 0, unsigned

00100111 CMPLEFXU& / CMPLEFXU& dst &= src1 <= src2 ? -1 : 0, unsigned fixed-point

00101000 CMPLT / CMPGT dst = src1 < src2 ? -1 : 0, signed

00101001 CMPLTFX / CMPGTFX dst = src1 < src2 ? -1 : 0, signed fixed-point

00101010 CMPLE / CMPGE dst = src1 <= src2 ? -1 : 0, signed

00101011 CMPLEFX / CMPGEFX dst = src1 <= src2 ? -1 : 0, signed fixed-point

00101100 CMPLT& / CMPGT& dst &= src1 < src2 ? -1 : 0, signed

00101101 CMPLTFX& / CMPGTFX& dst &= src1 < src2 ? -1 : 0, signed fixed-point

00101110 CMPLE& / CMPGE& dst &= src1 <= src2 ? -1 : 0, signed

00101111 CMPLEFX& / CMPGEFX& dst &= src1 <= src2 ? -1 : 0, signed fixed-point

00110000 MIN MINU dst = min(src1, src2); S determines signedness

00110001 MINFX MINFXU dst = min(src1, src2), fixed-point; S determines signedness

00110010 MAX MAXU dst = max(src1, src2); S determines signedness

00110011 MAXFX MAXFXU dst = max(src1, src2), fixed-point; S determines signedness

00110100 BOUND BOUNDU
Bounds dst to the range min(src1,src2) <= dst <= max(src1,src2);
S determines signedness

00110101 BOUNDFX BOUNDFXU LIke BOUND, but for fixed-point.

00110110 ADDCIRC Add src1 to dst, updating only src2 LSBs; for circular queues

00110111 SUBCIRC
Subtracts src1 from dst, updating only src2 LSBs; for circular
queues

00111000 ATAN2 Arctangent of (src2, src1) to one part in 16

00111001 ATAN2FX Arctangent of (src2, src1) to one part in 16, fixed point

00111010 SUBABS SUBABSU dst = abs(src1 - src2); S determines signedness of inputs

00111011 SUBABSFX SUBABSFXU dst = abs(src1 - src2); S determines signedness ; fixed point

00111100 DIST DISTU Fast distance approximation; S determines signedness

00111101 DISTFX DISTFXU Fast distance approx, fixed-point; S determines signedness.

00111110 SUMSQ SUMSQU Saturated 32-bit unsigned sum of squares; S determines
signedness of inputs. Output is not fixed point. 00111111 SUMSQFX SUMSQFXU

01000000 MPYSS MPYUU 32-bit product of 16-bit values

01000001 MPYFXSS MPYFXUU 16-bit product of 16-bit fixed-point values

01000010 MPYSU 32-bit product of 16-bit values

01000011 MPYFXSU 16-bit product of 16-bit fixed-point values

01000100 MPYUS 32-bit product of 16-bit values

01000101 MPYFXUS 16-bit product of 16-bit fixed-point values

01000110 MPY16 16-bit product of 16-bit values (S/U doesn’t matter)

01000111 ISQRT ISQRTFX Square root; S determines integer vs. fixed.

01001000 AAL ASCII Adjust Lo: (((src1 & 0xFF) - 0x20) << 3) + src2

01001001 AAH ASCII Adjust Hi: ((((src1 >> 8) & 0xFF) - 0x20) << 3) + src2

01001010 DIVS 16-bit signed divide; output is rem:quot in 2 regs

01001011 DIVFXS 16-bit signed fixed-point divide; output is rem:quot in 2 regs

01001100 DIVU 16-bit unsigned divide; output is rem:quot in 2 regs

01001101 DIVFXU 16-bit unsigned fixed-point divide; output is rem:quot in 2 regs

01001110 DIV32S reserved 32/16 ⟹ 16 signed divide; output is rem:quot in 2 regs

01001111 DIV32U reserved 32/16 ⟹ 16 unsigned divide; output is rem:quot in 2 regs

01010000 ADDS ADDU 16 + 16 ⟹ 32 addition with sign or zero extension

01010001 ADDH ADDM
ADDH: 16 + 16 + 16 ⟹ 16, with third operand from dst
ADDM: unsigned 16 + 16 + 16 ⟹ 32, with third op from dst_lo

01010010 SUBS signed 16 - signed 16 ⟹ 32

01010011 SUBU unsigned 16 - unsigned 16 ⟹ 32

01010100 SUBM unsigned 16 - unsigned 16 + signed 16(dst_lo) ⟹ 32

01010101 SUBH signed 16 - signed 16 + signed 16(dst_lo) ⟹ 32

01010110 DMOV src1:src2 ⟹ dst_hi:dst_lo

01010111 ADDSUB dst_hi ⟸ src1 + src2; dst_lo ⟸ src1 - src2

01011000 ABCD ABCDL Adds 2 BCD numbers. 32-bit output if S=1, w/ carry in dst_hi

01011001 ABCDH ABCDM
ABCDH: Adds 2 BCD numbers + 3-bit carry/borrow in dst.
ABCDM: Like ABCDH, with 3-bit carry/borrow written to dst_hi.

01011010 SBCD Subtracts 2 BCD numbers; 16-bit result

01011011 SBCDL Subtracts 2 BCD numbers; dst_hi gets 3-bit carry/borrow

01011100 SBCDM
Subtracts 2 BCD numbers + 3-bit carry/borrow in dst_lo; dst_hi
gets 3-bit carry/borrow result.

01011101 SBCDH Subtracts 2 BCD numbers + 3-bit carry/borrow in dst; 16-bit rslt

01011110 I2BCD Convert 32-bit int to 32-bit BCD; clamps to 99999999

01011111 BCD2I Convert 32-bit BCD to 32-bit int

01100000 CMPEQ& CMPNE& dst &= src1 == src2 ? -1 : 0; S = 1 inverts output

01100001 .. 11111111 Reserved

Opcode Set B

This opcode set currently does not exist.

Opcode Set C

This opcode set exists for the currently unimplemented long-immediate opcode format.

This opcode space has room for four instructions. While this opcode space remains reserved, this

specification proposes the following four opcode assignments:

Opcode Meaning

00 ADD. dstxr = src1r + immediate

01 AND. dstxr = src1r & immediate

10 OR. dstxr = src1r | immediate

11 MERGE. dstxr = (src1r & immediate) | (dstxr & ~immediate)

Instruction Descriptions

ADD3, opcodeA = 00000000b, S = 0

Adds two 16-bit numbers together, producing a 16-bit result.

dst = src1 + src2

NADD, opcodeA = 00000000b, S = 1

Adds two 16-bit numbers together and negates the sum, producing a 16-bit result.

dst = -(src1 + src2)

ADDFX, opcodeA = 00000001b, S = 0

Adds two 16-bit fixed-point numbers together, producing a 16-bit fixed-point result.

dst = swap (swap(src1) + swap(src2)) 5

NADDFX, opcodeA = 00000001b, S = 1

Adds two 16-bit fixed-point numbers together and negates the sum, producing a 16-bit fixed-point

result.

dst = swap(-(swap(src1) + swap(src2))

SUB3, opcodeA = 00000010b

Subtracts two 16-bit numbers, producing a 16-bit result.

dst = src1 - src2

SUBFX, opcodeA = 00000011b

Subtracts two 16-bit numbers, producing a 16-bit result.

dst = swap(swap(src1) - swap(src2))

AND3, opcodeA = 00000100b, S = 0

Computes the bitwise-AND between src1 and src2, producing a 16-bit result.

dst = src1 & src2

NAND, opcodeA = 00000100b, S = 1

Computes the inverse of the bitwise-AND between src1 and src2, producing a 16-bit result.

dst = ~(src1 & src2)

5 The swap() primitive swaps the upper and lower bytes of a 16-bit number, similar to the CP-1600 SWAP
instruction.

ANDN, opcodeA = 00000101b, S = 0

Computes the bitwise-AND between src1 and the inverse of src2, producing a 16-bit result.

dst = src1 & ~src2;

ORN, opcodeA = 00000101b, S = 1

Computes the inverse of the bitwise-AND between the src2 and inverse of src1, producing a 16-bit

result. This is equivalent to computing the bitwise-OR of src 2 with the inverse of src1.

dst = ~(src1 & ~src2);
dst = (~src1) | src2; // Alternate interpretation, applying deMorgan’s Law

OR3, opcodeA = 00000110b, S = 0

Computes the bitwise-OR between src1 and src2, producing a 16-bit result.

dst = src1 | src2;

NOR, opcodeA = 00000110b, S = 1

Computes the inverse of the bitwise-OR between src1 and src2, producing a 16-bit result.

dst = ~(src1 | src2);

XOR3, opcodeA = 00000111b, S = 0

Computes the bitwise-XOR between src1 and src2, producing a 16-bit result.

dst = src1 ̂ src2;

XNOR, opcodeA = 00000111b, S = 1

Computes the inverse of the bitwise-XOR between src1 and src2, producing a 16-bit result.

dst = ~(src1 ̂ src2);

SHL3, opcodeA = 00001000b

Shifts src1 left by the number of bit positions specified in src2[3:0]. Value is first sign extended to 32 bits

before shifting. The 32-bit result is placed in a pair of registers. You can also think of dst_lo as capturing

the result of a 16-bit shift, and dst_hi as capturing the “shifted away” bits.

dst_hi:dst_lo = sign_extend32(src1) << (src2 & 0xF);

SHLU3, opcodeA = 00001001b

Shifts src1 left by the number of bit positions specified in src2[3:0]. Value is first zero extended to 32 bits

before shifting. The 32-bit result is placed in a pair of registers. You can also think of dst_lo as capturing

the result of a 16-bit shift, and dst_hi as capturing the “shifted away” bits..

dst_hi:dst_lo = zero_extend32(src1) << (src2 & 0xF);

SHR3, opcodeA = 00001010b

Shifts src1 right by the number of bit positions specified in src2[3:0]. Value is first deposited in the upper

16 bits of a 32-bit signed value before shifting. The right shift performs sign-extension. The 32-bit result

is placed in a pair of registers, dst_lo:dst_hi. You can also think of dst_lo as capturing the result of a

16-bit shift, and dst_hi as capturing the “shifted away” bits.

dst_lo:dst_hi = signed32(src1 << 16) >> (src2 & 0xF);

SHRU3, opcodeA = 00001011b

Shifts src1 right by the number of bit positions specified in src2[3:0]. Value is first deposited in the upper

16 bits of a 32-bit unsigned value before shifting. The right shift performs zero-extension. The 32-bit

result is placed in a pair of registers, dst_lo:dst_hi. You can also think of dst_lo as capturing the result of

a 16-bit shift, and dst_hi as capturing the “shifted away” bits.

dst_lo:dst_hi = unsigned32(src1 << 16) >> (src2 & 0xF);

BSHLU, opcodeA = 00001100b

Byte-masked shifts shift each byte within a 16-bit word independently. BSHLU shifts each byte in src1

left by the amount specified in src2[3:0], clamped to the range 0..8. It writes the shifted result to dst_lo,

and the “shifted away” bits to dst_hi. This is intended for manipulating byte-oriented graphics packed

into 16-bit words.

src1_lsb = src1 & 0xFF;
src1_msb = (src1 >> 8) & 0xFF;
shift = (src2 & 0xF) < 8 ? src2 & 0xF : 8;
shifted_lsb = (src1_lsb << shift);
shifted_msb = (src2_msb << shift);
dst_lo = ((shifted_msb & 0xFF) << 8) | (shifted_lsb & 0xFF);
dst_hi = (shifted_msb & 0xFF00) | ((shifted_lsb >> 8) & 0xFF);

BSHRU, opcodeA = 00001101b

Byte-masked shifts shift each byte within a 16-bit word independently. BSHRU shifts each byte in src1

right by the amount specified in src2[3:0], clamped to the range 0..8. It writes the shifted result to

dst_lo, and the “shifted away” bits to dst_hi. This is intended for manipulating byte-oriented graphics

packed into 16-bit words.

src1_lsb = (src1 & 0xFF) << 8;
src1_msb = src1 & 0xFF00;
shift = (src2 & 0xF) < 8 ? src2 & 0xF : 8;
shifted_lsb = (src1_lsb >> shift);
shifted_msb = (src2_msb >> shift);
dst_lo = (shifted_msb & 0xFF00) | ((shifted_lsb >> 8) & 0xFF);
dst_hi = ((shifted_msb & 0xFF) << 8) | (shifted_lsb & 0xFF);

ROL, opcodeA = 00001110b

Rotates the bits in src1 left by the number of bit positions specified in src2[3:0].

shift = src2 & 0xF;
dst = (src1 << shift) | (src1 >> (16 - shift));

ROR, opcodeA = 00001111b

Rotates the bits in src1 right by the number of bit positions specified in src2[3:0].

shift = src2 & 0xF;
dst = (src1 >> shift) | (src1 << (16 - shift));

BITCNTL, opcodeA = 00010000b

Counts the number of 1 bits in src1, looking only at src2[3:0] + 1 bits starting from the left. For example,

BITCNTL R0, 3, X0 will examine bits 15, 14, and 13.

to_count = (src2 & 0xF) + 1;
one_bits = 0;
mask = 0x8000u;
while (to_count != 0) {
 if (src1 & mask) {
 one_bits++;
 }
 to_count--;
 mask >>= 1;
}
dst = one_bits;

BITCNTR, opcodeA = 00010000b

Counts the number of 1 bits in src1, looking only at src2[3:0] + 1 bits starting from the right. For

example, BITCNTR R0, 3, X0 will examine bits 0, 1, and 2.

to_count = (src2 & 0xF) + 1;
one_bits = 0;
mask = 0x0001u;
while (to_count != 0) {
 if (src1 & mask) {
 one_bits++;
 }
 to_count--;
 mask <<= 1;
}
dst = one_bits;

BITREVL, opcodeA = 00010010b

Performs a bit-reversal on the left-most bits of src1, writing the result to dst. Only reverses src2[3:0]+1

bits at the left. Other bits in the result are zeroed. Can be useful for flipping a bitmapped graphic.

Example: BITREVL R0, 3, X0 will write bits 15, 14, and 13 of R0 to bits 13, 14, and 15 of X0 , while

the rest of X0 will be filled with zeros.

to_reverse = (src2 & 0xF) + 1;
value_in = src1;
value_out = 0;

while (to_reverse != 0) {
 value_out >>= 1;
 if (value_in & 0x8000) {
 value_out |= 0x8000;
 }
 value_in <<= 1;
 to_reverse--;
}

dst = value_out;

BITREVR, opcodeA = 00010011b

Performs a bit-reversal on the right-most bits of src1, writing the result to dst. Only reverses src2[3:0]+1

bits at the right. Other bits in the result are zeroed. Can be useful for flipping a bitmapped graphic.

Example: BITREVR R0, 3, X0 will write bits 0, 1, and 2 of R0 to bits 2, 1, and 0 of X0 , while the rest

of X0 will be filled with zeros.

to_reverse = (src2 & 0xF) + 1;
value_in = src1;
value_out = 0;

while (to_reverse != 0) {
 value_out <<= 1;
 if (value_in & 0x0001) {
 value_out |= 0x0001;
 }
 value_in >>= 1;
 to_reverse--;
}

dst = value_out;

LMO, opcodeA = 00010100b

Left-Most One: Locates the left-most 1 bit in src1, at or below the bit number specified in src2[3:0].

Returns the bit position of the 1 bit, or -1 if no 1 bit is found.

one_bit = -1;
for (i = src2 & 0xF; i >= 0; i--) {
 if ((src1 & (1 << i)) != 0) {
 one_bit = i;
 break;
 }
}
dst = one_bit;

LMZ, opcodeA = 00010101b

Left-Most Zero: Locates the left-most 0 bit in src1, at or below the bit number specified in src2[3:0].

Returns the bit position of the 0 bit, or -1 if no 0 bit is found.

zero_bit = -1;
for (i = src2 & 0xF; i >= 0; i--) {
 if ((src1 & (1 << i)) == 0) {
 zero_bit = i;
 break;
 }
}
dst = zero_bit;

RMO, opcodeA = 00010110b

Right-Most One: Locates the right-most 1 bit in src1, at or above the bit number specified in src2[3:0].

Returns the bit position of the 1 bit, or -1 if no 1 bit is found.

one_bit = -1;
for (i = src2 & 0xF; i <= 15; i++) {
 if ((src1 & (1 << i)) != 0) {
 one_bit = i;
 break;
 }
}
dst = one_bit;

RMZ, opcodeA = 00010111b

Right-Most Zero: Locates the left-most 0 bit in src1, at or above the bit number specified in src2[3:0].

Returns the bit position of the 0 bit, or -1 if no 0 bit is found.

zero_bit = -1;
for (i = src2 & 0xF; i <= 15; i++) {
 if ((src1 & (1 << i)) == 0) {
 zero_bit = i;
 break;
 }
}
dst = zero_bit;

REPACK, opcodeA = 00011000b

Packs the lower bytes of src1 and src2 into one destination register, and the upper bytes of src1 and src2

into another.

dst_lo = ((src1 & 0xFF) << 8) | (src2 & 0xFF);
dst_hi = (src1 & 0xFF00) | ((src2 >> 8) & 0xFF);

PACKL, opcodeA = 00011001b

Packs the lower bytes of src1 and src2 into one destination register. It’s the dst_lo half of REPACK.

dst = ((src1 & 0xFF) << 8) | (src2 & 0xFF);

PACKH, opcodeA = 00011010b

Packs the upper bytes of src1 and src2 into one destination register. It’s the dst_hi half of REPACK.

dst = (src1 & 0xFF00) | ((src2 >> 8) & 0xFF);

PACKLH, opcodeA = 00011011b

Packs the lower byte of src1 and upper byte of src2 into one destination register. Useful for extracting

the middle 16 bits out of a 32-bit quantity.

dst = ((src1 & 0xFF) << 8) | ((src2 >> 8) & 0xFF);

BTOG, opcodeA = 00011100b

Toggles the bit in src1 specified by src2[3:0], and writes the result to dst.

dst = src1 ̂ (1u << (src2 & 0xF));

BSET, opcodeA = 00011101b

Sets the bit in src1 specified by src2[3:0], and writes the result to dst.

dst = src1 | (1u << (src2 & 0xF));

BCLR, opcodeA = 00011110b

Clears the bit in src1 specified by src2[3:0], and writes the result to dst.

dst = src1 & ~(1u << (src2 & 0xF));

CMPEQ, opcodeA = 00011111b, S = 0

Sets dst to 0 or -1 (0xFFFF) based on whether src1 equals src2.

dst = src1 == src2 ? -1 : 0;

CMPNE, opcodeA = 00011111b, S = 1

Sets dst to 0 or -1 (0xFFFF) based on whether src1 equals src2.

dst = src1 != src2 ? -1 : 0;

CMPLTU / CMPGTU, opcodeA = 00100000b

Sets dst to 0 or -1 (0xFFFF) based on whether src1 is less than src2, interpreting them as unsigned

integers. CMPGTU is an alias for CMPLTU with its operands swapped.

dst = unsigned(src1) < unsigned(src2) ? -1 : 0;

CMPLTFXU / CMPGTFXU, opcodeA = 00100001b

Sets dst to 0 or -1 (0xFFFF) based on whether src1 is less than src2, interpreting them as unsigned

fixed-point numbers. CMPGTFXU is an alias for CMPLTFXU with its operands swapped.

dst = unsigned(swap(src1)) < unsigned(swap(src2)) ? -1 : 0;

CMPLEU / CMPGEU, opcodeA = 00100010b

Sets dst to 0 or -1 (0xFFFF) based on whether src1 is less than or equal to src2, interpreting them as

unsigned integers. CMPGEU is an alias for CMPLEU with its operands swapped.

dst = unsigned(src1) <= unsigned(src2) ? -1 : 0;

CMPLEFXU / CMPGEFXU, opcodeA = 00100011b

Sets dst to 0 or -1 (0xFFFF) based on whether src1 is less than or equal to src2, interpreting them as

unsigned fixed-point numbers. CMPGEFXU is an alias for CMPLEFXU with its operands swapped.

dst = unsigned(swap(src1)) <= unsigned(swap(src2)) ? -1 : 0;

CMPLTU& / CMPGTU&, opcodeA = 00100100b

Bitwise ANDs dst with 0 or -1 (0xFFFF) based on whether src1 is less than src2, interpreting them as

unsigned integers. Useful for creating compound conditions or masking values based on a condition.

CMPGTU& is an alias for CMPLTU& with its operands swapped.

dst &= unsigned(src1) < unsigned(src2) ? -1 : 0;

CMPLTFXU& / CMPGTFXU&, opcodeA = 00100101b

Bitwise ANDs dst with 0 or -1 (0xFFFF) based on whether src1 is less than src2, interpreting them as

unsigned fixed-point numbers. Useful for creating compound conditions or masking values based on a

condition. CMPGTFXU& is an alias for CMPLTFXU& with its operands swapped.

dst &= unsigned(swap(src1)) < unsigned(swap(src2)) ? -1 : 0;

CMPLEU& / CMPGEU&, opcodeA = 00100110b

Bitwise ANDs dst with 0 or -1 (0xFFFF) based on whether src1 is less than or equal to src2, interpreting

them as unsigned integers. Useful for creating compound conditions or masking values based on a

condition. CMPGEU& is an alias for CMPLEU& with its operands swapped.

dst &= unsigned(src1) <= unsigned(src2) ? -1 : 0;

CMPLEFXU& / CMPGEFXU&, opcodeA = 00100111b

Bitwise ANDs dst with 0 or -1 (0xFFFF) based on whether src1 is less than or equal to src2, interpreting

them as unsigned fixed-point numbers. Useful for creating compound conditions or masking values

based on a condition. CMPGEFXU& is an alias for CMPLEFXU& with its operands swapped.

dst &= unsigned(swap(src1)) <= unsigned(swap(src2)) ? -1 : 0;

CMPLT / CMPGT, opcodeA = 00101000b

Sets dst to 0 or -1 (0xFFFF) based on whether src1 is less than src2, interpreting them as signed integers.

CMPGT is an alias for CMPLT with its operands swapped.

dst = signed(src1) < signed(src2) ? -1 : 0;

CMPLTFX / CMPGTFX, opcodeA = 00101001b

Sets dst to 0 or -1 (0xFFFF) based on whether src1 is less than src2, interpreting them as signed

fixed-point numbers. CMPGTFX is an alias for CMPLTFX with its operands swapped.

dst = signed(swap(src1)) < signed(swap(src2)) ? -1 : 0;

CMPLE / CMPGE, opcodeA = 00101010b

Sets dst to 0 or -1 (0xFFFF) based on whether src1 is less than or equal to src2, interpreting them as

signed integers. CMPGE is an alias for CMPLE with its operands swapped.

dst = signed(src1) <= signed(src2) ? -1 : 0;

CMPLEFX / CMPGEFX, opcodeA = 00101011b

Sets dst to 0 or -1 (0xFFFF) based on whether src1 is less than or equal to src2, interpreting them as

signed fixed-point numbers. CMPGEFX is an alias for CMPLEFX with its operands swapped.

dst = signed(swap(src1)) <= signed(swap(src2)) ? -1 : 0;

CMPLT& / CMPGT&, opcodeA = 00101100b

Bitwise ANDs dst with 0 or -1 (0xFFFF) based on whether src1 is less than src2, interpreting them as

signed integers. Useful for creating compound conditions or masking values based on a condition.

CMPGT& is an alias for CMPLT& with its operands swapped.

dst &= signed(src1) < signed(src2) ? -1 : 0;

CMPLTFX& / CMPGTFX&, opcodeA = 00101101b

Bitwise ANDs dst with 0 or -1 (0xFFFF) based on whether src1 is less than src2, interpreting them as

signed fixed-point numbers. Useful for creating compound conditions or masking values based on a

condition. CMPGTFX& is an alias for CMPLTFX& with its operands swapped.

dst &= signed(swap(src1)) < signed(swap(src2)) ? -1 : 0;

CMPLE& / CMPGE&, opcodeA = 00101110b

Bitwise ANDs dst with 0 or -1 (0xFFFF) based on whether src1 is less than or equal to src2, interpreting

them as signed integers. Useful for creating compound conditions or masking values based on a

condition. CMPGE& is an alias for CMPLE& with its operands swapped.

dst &= signed(src1) <= signed(src2) ? -1 : 0;

CMPLEFX& / CMPGEFX&, opcodeA = 00101111b

Bitwise ANDs dst with 0 or -1 (0xFFFF) based on whether src1 is less than or equal to src2, interpreting

them as signed fixed-point numbers. Useful for creating compound conditions or masking values based

on a condition. CMPGEFX& is an alias for CMPLEFX& with its operands swapped.

dst &= signed(swap(src1)) <= signed(swap(src2)) ? -1 : 0;

MIN, opcodeA = 00110000b, S = 0

Writes the minimum of src1 and src2 to dst, treating the inputs as signed integers.

dst = signed(src1) < signed(src2) ? src1 : src2;

MINU, opcodeA = 00110000b, S = 1

Writes the minimum of src1 and src2 to dst, treating the inputs as unsigned integers.

dst = unsigned(src1) < unsigned(src2) ? src1 : src2;

MINFX, opcodeA = 00110001b, S = 0

Writes the minimum of src1 and src2 to dst, treating the inputs as signed fixed-point values.

dst = signed(swap(src1)) < signed(swap(src2)) ? src1 : src2;

MINFXU, opcodeA = 00110001b, S = 1

Writes the minimum of src1 and src2 to dst, treating the inputs as unsigned fixed-point values.

dst = unsigned(swap(src1)) < unsigned(swap(src2)) ? src1 : src2;

MAX, opcodeA = 00110010b, S = 0

Writes the maximum of src1 and src2 to dst, treating the inputs as signed integers.

dst = signed(src1) > signed(src2) ? src1 : src2;

MAXU, opcodeA = 00110010b, S = 1

Writes the maximum of src1 and src2 to dst, treating the inputs as unsigned integers.

dst = unsigned(src1) > unsigned(src2) ? src1 : src2;

MAXFX, opcodeA = 00110011b, S = 0

Writes the maximum of src1 and src2 to dst, treating the inputs as signed fixed-point values.

dst = signed(swap(src1)) > signed(swap(src2)) ? src1 : src2;

MAXFXU, opcodeA = 00110011b, S = 1

Writes the maximum of src1 and src2 to dst, treating the inputs as unsigned fixed-point values.

dst = unsigned(swap(src1)) > unsigned(swap(src2)) ? src1 : src2;

BOUND, opcodeA = 00110100b, S = 0

Clamps the value in dst to the range min(src1, src2) ≤ dst ≤ max(src1, src2), interpreting the values as

signed integers.

bound_lo = signed(src1) < signed(src2) ? src1 : src2;
bound_hi = signed(src1) > signed(src2) ? src1 : src2;
val = signed(dst);
dst = val < bound_lo ? bound_lo : val > bound_hi ? bound_hi : val;

BOUNDU, opcodeA = 00110100b, S = 1

Clamps the value in dst to the range min(src1, src2) ≤ dst ≤ max(src1, src2), interpreting the values as

unsigned integers.

bound_lo = unsigned(src1) < unsigned(src2) ? src1 : src2;
bound_hi = unsigned(src1) > unsigned(src2) ? src1 : src2;
val = unsigned(dst);
dst = val < bound_lo ? bound_lo : val > bound_hi ? bound_hi : val;

BOUNDFX, opcodeA = 00110101b, S = 0

Clamps the value in dst to the range min(src1, src2) ≤ dst ≤ max(src1, src2), interpreting the values as

signed fixed-point numbers.

in1 = signed(swap(src1));
in2 = signed(swap(src2));
bound_lo = in1 < in2 ? in1 : in2;
bound_hi = in1 > in2 ? in1 : in2;
val = signed(swap(dst));
out = val < bound_lo ? bound_lo : val > bound_hi ? bound_hi : val;
dst = swap(out);

BOUNDFXU, opcodeA = 00110101b, S = 1

Clamps the value in dst to the range min(src1, src2) ≤ dst ≤ max(src1, src2), interpreting the values as

signed fixed-point numbers.

in1 = unsigned(swap(src1));
in2 = unsigned(swap(src2));
bound_lo = in1 < in2 ? in1 : in2;
bound_hi = in1 > in2 ? in1 : in2;
val = unsigned(swap(dst));
out = val < bound_lo ? bound_lo : val > bound_hi ? bound_hi : val;
dst = swap(out);

ADDCIRC, opcodeA = 00110110b

Adds src1 to dst, updating only the number of LSBs specified in src2[3:0]. This is intended for indexing

circular queues.

update_mask = (1u << (src2 & 0xF)) - 1;
keep_mask = ~update_mask;
dst = (dst & keep_mask) | ((dst + src1) & update_mask);

SUBCIRC, opcodeA = 00110111b

Subtracts src1 from dst, updating only the number of LSBs specified in src2[3:0]. This is intended for

indexing circular queues.

update_mask = (1u << (src2 & 0xF)) - 1;
keep_mask = ~update_mask;
dst = (dst & keep_mask) | ((dst - src1) & update_mask);

ATAN2, opcodeA = 00111000b

Computes the heading associated with the vector (src1, src2), where src1 is the signed integer X

component and src2 is the signed integer Y component. Returns a value 0 through 15, with 0

corresponding to the positive X direction. This is similar to the atan2() library function in many

environments, modified to map angles onto [0, 15] rather than [-π, π]. The input (0,0) returns 0.

The 16 output values correspond to compass headings as follows, and are intended to be consistent with

Intellivision controller input decoding.

Output Heading Output Heading Output Heading Output Heading

0 E 4 N 8 W 12 S

1 ENE 5 NNW 9 WSW 13 SSE

2 NE 6 NW 10 SW 14 SE

3 NNE 7 WNW 11 SSW 15 ESE

radians = atan2(signed(src2), signed(src1));
if (radians < 0) radians = 2*π - radians; // Make angle go [0, 2π]
half_sector = int(radians * 16 / π); // Half sector goes 0 to 31.
sector = ((half_sector + 1) / 2) % 16; // Map to 0..15, centered on each heading

ATAN2FX, opcodeA = 00111001b

Identical to ATAN2, except that it interprets its inputs as signed fixed-point numbers. See ATAN2,

opcodeA = 00111000b, above.

SUBABS, opcodeA = 00111010b, S = 0

Computes the absolute value of (src1 - src2), interpreting both inputs as signed integers.

op1 = signed16(src1);
op2 = signed16(src2);
dst = unsigned16(op1 > op2 ? op1 - op2 : op2 - op1);

SUBABSU, opcodeA = 00111010b, S = 1

Computes the absolute value of (src1 - src2), interpreting both as unsigned integers.

op1 = unsigned16(src1);
op2 = unsigned16(src2);
dst = unsigned16(op1 > op2 ? op1 - op2 : op2 - op1);

SUBABSFX, opcodeA = 00111011b, S = 0

Computes the absolute value of (src1 - src2), interpreting both as signed fixed-point numbers. Result is

unsigned fixed-point.

op1 = signed16(swap(src1));
op2 = signed16(swap(src2));
dst = swap(unsigned16(op1 > op2 ? op1 - op2 : op2 - op1));

SUBABSFXU, opcodeA = 00111011b, S = 1

Computes the absolute value of (src1 - src2), interpreting both as unsigned fixed-point numbers. Result

is unsigned fixed-point.

op1 = unsigned16(swap(src1));
op2 = unsigned16(swap(src2));
dst = swap(unsigned16(op1 > op2 ? op1 - op2 : op2 - op1));

DIST, opcodeA = 00111100b, S = 0

Computes the fast distance approximation from Graphics Gems IV. This has a maximum error of about

4%. Interprets inputs as signed integers and computes distance based on their absolute values.

op1 = abs(signed16(src1));
op2 = abs(signed16(src2));
dst = (123 * max(op1, op2) + 51 * min(op1, op2)) / 128;

DISTU, opcodeA = 00111100b, S = 1

Computes the fast distance approximation from Graphics Gems IV. This has a maximum error of about

4%. Interprets inputs as unsigned integers.

op1 = unsigned16(src1);
op2 = unsigned16(src2);
dst = (123 * max(op1, op2) + 51 * min(op1, op2)) / 128;

DISTFX, opcodeA = 00111101b, S = 0

Computes the fast distance approximation from Graphics Gems IV. This has a maximum error of about

4%. Interprets inputs as signed fixed-point values and computes distance based on their absolute values.

op1 = abs(signed16(swap(src1)));
op2 = abs(signed16(swap(src2)));
dst = swap((123 * max(op1, op2) + 51 * min(op1, op2)) / 128);

DISTFXU, opcodeA = 00111101b, S = 1

Computes the fast distance approximation from Graphics Gems IV. This has a maximum error of about

4%. Interprets inputs as unsigned fixed-point values.

op1 = unsigned16(swap(src1));
op2 = unsigned16(swap(src2));
dst = swap((123 * max(op1, op2) + 51 * min(op1, op2)) / 128);

http://wiki.intellivision.us/index.php?title=Dist_fast.asm
http://wiki.intellivision.us/index.php?title=Dist_fast.asm
http://wiki.intellivision.us/index.php?title=Dist_fast.asm
http://wiki.intellivision.us/index.php?title=Dist_fast.asm

SUMSQ, opcodeA = 00111110b, S = 0

Computes the sum of the squares of src1 and src2, clamping to a 32-bit unsigned sum. Both src1 and

src2 are interpreted as 16-bit signed integer values.

op1 = signed32(src1);
op2 = signed32(src2);
sq = unsigned64(src1*src1 + src2*src2);
dst_hi:dst_lo = min(0xFFFFFFFFu, sq);

SUMSQU, opcodeA = 00111110b, S = 1

Computes the sum of the squares of src1 and src2, clamping to a 32-bit unsigned sum. Both src1 and

src2 are interpreted as 16-bit unsigned integer values.

op1 = unsigned32(src1);
op2 = unsigned32(src2);
sq = unsigned64(src1*src1 + src2*src2);
dst_hi:dst_lo = min(0xFFFFFFFFu, sq);

SUMSQFX, opcodeA = 00111111b, S = 0

Computes the sum of the squares of src1 and src2, clamping to a 32-bit unsigned sum. Both src1 and

src2 are interpreted as 16-bit signed fixed-point values. Sum is not byte/word swapped. dst_hi holds the

integer portion and dst_lo holds the fractional portion.

op1 = signed32(swap(src1));
op2 = signed32(swap(src2));
sq = unsigned64(src1*src1 + src2*src2);
dst_hi:dst_lo = min(0xFFFFFFFFu, sq);

SUMSQFXU, opcodeA = 00111111b, S = 1

Computes the sum of the squares of src1 and src2, clamping to a 32-bit unsigned sum. Both src1 and

src2 are interpreted as 16-bit unsigned fixed-point values. Sum is not byte/word swapped. dst_hi holds

the integer portion and dst_lo holds the fractional portion.

op1 = signed32(swap(src1));
op2 = signed32(swap(src2));
sq = unsigned64(src1*src1 + src2*src2);

dst_hi:dst_lo = min(0xFFFFFFFFu, sq);

MPYSS, opcodeA = 01000000b, S = 0

Computes the 32-bit product of src1 and src2, interpreting both as signed integers.

dst_hi:dst_lo = signed32(src1) * signed32(src2);

MPYUU, opcodeA = 01000000b, S = 1

Computes the 32-bit product of src1 and src2, interpreting both as unsigned integers.

dst_hi:dst_lo = unsigned32(src1) * unsigned32(src2);

MPYFXSS, opcodeA = 01000001b, S = 0

Computes the 16-bit fixed-point product of src1 and src2, interpreting both as signed fixed-point values.

op1 = signed32(swap(src1));
op2 = signed32(swap(src2));
prd = ((op1 * op2) >> 8) & 0xFFFF;
dst = swap(prd);

MPYFXUU, opcodeA = 01000001b, S = 1

Computes the 16-bit fixed-point product of src1 and src2, interpreting both as unsigned fixed-point

values.

op1 = unsigned32(swap(src1));
op2 = unsigned32(swap(src2));
prd = ((op1 * op2) >> 8) & 0xFFFF;
dst = swap(prd);

MPYSU, opcodeA = 01000010b

Computes the 32-bit product of src1 and src2, interpreting src1 as a signed integer, and src2 as an

unsigned integer.

dst_hi:dst_lo = signed32(src1) * unsigned32(src2);

MPYFXSU, opcodeA = 01000011b

Computes the 16-bit fixed-point product of src1 and src2, interpreting src1 as a signed fixed-point value,

and src2 as an unsigned fixed-point value.

op1 = signed32(swap(src1));
op2 = unsigned32(swap(src2));
prd = ((op1 * op2) >> 8) & 0xFFFF;
dst = swap(prd);

MPYUS, opcodeA = 01000100b

Computes the 32-bit product of src1 and src2, interpreting src1 as an unsigned integer, and src2 as a

signed integer.

dst_hi:dst_lo = unsigned32(src1) * signed32(src2);

MPYFXUS, opcodeA = 01000101b

Computes the 16-bit fixed-point product of src1 and src2, interpreting src1 as an unsigned fixed-point

value, and src2 as a signed fixed-point value.

op1 = unsigned32(swap(src1));
op2 = signed32(swap(src2));
prd = ((op1 * op2) >> 8) & 0xFFFF;
dst = swap(prd);

MPY16, opcodeA = 01000110b

Computes the 16-bit product of src1 and src2, interpreting src1 as integers of unspecified sign. 6

dst = src1 * src2;

6 Should have defined this only for S = 0, so that S = 1 could have some other meaning. Ah well...

ISQRT, opcodeA = 01000111b, S = 0

Computes the integer square root of src1, interpreting src1 as an unsigned integer. Ignores src2

dst = floor(sqrt(unsigned(src1)));

ISQRTFX, opcodeA = 01000111b, S = 1

Computes the fixed-point square root of src1, interpreting src1 as an unsigned fixed-point value. Ignores

src2

dst = swap(floor(sqrt(unsigned(swap(src1)) * 256)));

AAL, opcodeA = 01001000b

ASCII Adjust Lo: Adjusts the low byte of src1 for display in BACKTAB, assuming it holds an ASCII

character. It subtracts 0x20 from the value, shifts left by 3 positions, and then adds a display format

adjustment from src2.

dst = (((src1 & 0xFF) - 0x20) << 3) + src2;

AAH, opcodeA = 01001001b

ASCII Adjust Hi: Adjusts the high byte of src1 for display in BACKTAB, assuming it holds an ASCII

character. It subtracts 0x20 from the value, shifts left by 3 positions, and then adds a display format

adjustment from src2.

dst = ((((src1 >> 8) & 0xFF) - 0x20) << 3) + src2;

DIVS, opcodeA = 01001010b

Divides src1 by src2, treating both as signed integers. Places the signed quotient in dst_lo and remainder

in dst_hi. If src2 is 0, both quotient and remainder get 0x7FFF. Division rounds towards 0, so (-1)/2 = 0

and (-1)%2 = -1.

if (src2) {
 dst_lo = signed(src1) / signed(src2);
 dst_hi = signed(src1) % signed(src2);

} else {
 dst_lo = 0x7FFF;
 dst_hi = 0x7FFF;
}

DIVFXS, opcodeA = 01001011b

Divides src1 by src2, treating both as signed fixed-point values. Places the signed fixed-point quotient in

dst_lo and remainder in dst_hi. If src2 is 0, or the divide result is out of range, both quotient and

remainder get 0xFF7F.

op1 = signed32(swap(src1)) * 256;
op2 = signed32(swap(src2));
dst_lo = swap(0x7FFF);
dst_hi = swap(0x7FFF);
if (op2) {
 quo = op1 / op2;
 rem = op1 % op2;
 if (quo >= -0x8000 && quo <= 0x7FFF) {
 dst_lo = swap(quo);
 dst_hi = swap(rem);
 }
}

DIVU, opcodeA = 01001100b

Divides src1 by src2, treating both as unsigned integers. Places the unsigned quotient in dst_lo and

remainder in dst_hi. If src2 is 0, both quotient and remainder get 0xFFFF.

if (src2) {
 dst_lo = unsigned(src1) / unsigned(src2);
 dst_hi = unsigned(src1) % unsigned(src2);
} else {
 dst_lo = 0xFFFF;
 dst_hi = 0xFFFF;
}

DIVFXU, opcodeA = 01001101b

Divides src1 by src2, treating both as unsigned fixed-point values. Places the unsigned fixed-point

quotient in dst_lo and remainder in dst_hi. If src2 is 0, or the divide result is out of range, both quotient

and remainder get 0xFFFF.

op1 = unsigned32(swap(src1)) * 256;
op2 = unsigned32(swap(src2));
dst_lo = swap(0xFFFF);
dst_hi = swap(0xFFFF);
if (op2) {
 quo = op1 / op2;
 rem = op1 % op2;
 if (quo <= 0xFFFF) {
 dst_lo = swap(quo);
 dst_hi = swap(rem);
 }
}

DIV32S, opcodeA = 01001110b, S = 0

Divides src1_hi:src1_lo by src2, treating both as signed integers. This is a 32-bit by 16-bit signed divide.

DIV32S requires the S bit to be 0 in the opcode; opcodeA = 01001110b, S = 1 is reserved.

If src1 is an extreg , then src1_hi comes from extreg + 1, and src1_lo comes from extreg . If src1 is a native

CPU register, then src1_hi comes from that register, and src1_lo is 0x0000.

Places the signed quotient in dst_lo and remainder in dst_hi. If src2 is 0 or the result is out of range,

both quotient and remainder get 0x7FFF.

if (src2) {
 quo = signed32(src1_hi:src1_lo) / signed16(src2);
 rem = signed32(src1_hi:src1_lo) % signed16(src2);
}
if (!src2 || quo > 0x7FFF || quo < -0x8000) {
 quo = 0x7FFF;
 rem = 0x7FFF;
}
dst_lo = quo;
dst_hi = rem;

DIV32U, opcodeA = 01001111b, S = 0

Divides src1_hi:src1_lo by src2, treating both as unsigned integers. This is a 32-bit by 16-bit unsigned

divide. DIV32U requires the S bit to be 0 in the opcode; opcodeA = 01001111b, S = 1 is reserved.

If src1 is an extreg , then src1_hi comes from extreg + 1, and src1_lo comes from extreg . If src1 is a native

CPU register, then src1_hi comes from that register, and src1_lo is 0x0000.

Places the unsigned quotient in dst_lo and remainder in dst_hi. If src2 is 0 or the result is out of range,

both quotient and remainder get 0xFFFF.

if (src2) {
 quo = unsigned32(src1_hi:src1_lo) / unsigned16(src2);
 rem = unsigned32(src1_hi:src1_lo) % unsigned16(src2);
}
if (!src2 || quo > 0xFFFF) {
 quo = 0xFFFF;
 rem = 0xFFFF;
}
dst_lo = quo;
dst_hi = rem;

ADDS, opcodeA = 01010000b, S = 0

Addition with sign-extension. Performs a 16-bit + 16-bit ⟹ 32-bit add, sign-extending both arguments

to 32 bits first. This is intended for promoting 16-bit values to 32-bit, for certain forms of

extended-precision arithmetic.

dst_hi:dst_lo = sign_extend32(src1) + sign_extend32(src2);

ADDU, opcodeA = 01010000b, S = 1

Addition with zero-extension. Performs a 16-bit + 16-bit ⟹ 32-bit add, zero-extending both arguments

to 32 bits first. This serves two purposes:

1. Promoting 16-bit values to 32-bit as part of extended-precision arithmetic, and

2. The first step of an N-bit + N-bit extended precision add, writing the carry in dst_hi.

For the second role, see the example under ADDM below.

dst_hi:dst_lo = zero_extend32(src1) + zero_extend32(src2);

ADDH, opcodeA = 01010001b, S = 0

Adds the three 16-bit values in src1, src2, and dst, writing the result to dst. This is intended for two

purposes:

1. An optimized three-input general purpose addition, and

2. The terminating step of an extended precision addition.

For the second role, see the example under ADDM below.

dst = src1 + src2 + dst;

ADDM, opcodeA = 01010001b, S = 1

Adds the three 16-bit values in src1, src2, and dst_lo, writing the 32-bit result to dst_hi:dst_lo. This

performs a 16-bit + 16-bit + 16-bit ⟹ 32-bit add, zero-extending input arguments to 32 bits first.

dst_hi:dst_lo = zero_extend32(src1) + zero_extend32(src2)
 + zero_extend(dst_lo);

SUBS, opcodeA = 01010010b

Subtraction with sign-extension. Performs a 16-bit - 16-bit ⟹ 32-bit add, sign-extending both

arguments to 32 bits first. This is intended for promoting 16-bit values to 32-bit, for certain forms of

extended-precision arithmetic.

dst_hi:dst_lo = sign_extend32(src1) - sign_extend32(src2);

SUBU, opcodeA = 01010011b

Subtraction with zero-extension. Performs a 16-bit - 16-bit ⟹ 32-bit add, zero-extending both

arguments to 32 bits first. The result is effectively a 32-bit signed value. This serves two purposes:

3. Promoting 16-bit values to 32-bit as part of extended-precision arithmetic, and

4. The first step of an N-bit + N-bit extended precision subtract, writing the carry/borrow in dst_hi.

For the second role, see the example under ADDM above.

dst_hi:dst_lo = zero_extend32(src1) - zero_extend32(src2);

SUBM, opcodeA = 01010100b

Adds the three 16-bit values in src1, src2, and dst_lo, writing the 32-bit result to dst_hi:dst_lo. This

performs a 16-bit - 16-bit + 16-bit ⟹ 32-bit mixed add/subtract.

Both src1 and src2 are treated as unsigned, while dst_lo is treated as signed, to account for a negative

‘borrow’. This is intended to serve as the middle step of an extended-precision subtract. See the

example under ADDM above for additional details.

dst_hi:dst_lo = zero_extend32(src1) + zero_extend32(src2)
 + sign_extend(dst_lo);

SUBH, opcodeA = 01010101b

Subtracts the 16-bit values in src2 from src1, and then adds the result to dst. This is intended to be the

final step of an extended precision subtract. See the example under ADDM above for additional details.

dst = src1 - src2 + dst;

DMOV, opcodeA = 01010110b

Double register move: Copies the values in src1 and src2 to dst_hi:dst_lo.

dst_hi = src1;
dst_lo = src2;

ADDSUB, opcodeA = 01010111b

Computes the sum and difference between src1 and src2. Writes the sum to dst_hi, and the difference

to dst_lo.

dst_hi = src1 + src2;
dst_lo = src1 - src2;

ABCD, opcodeA = 01011000b, S = 0

Binary Coded Decimal (BCD) addition. Adds src1 and src2 as BCD inputs, writing the result to dst.

dst = src1 + src2; // BCD

ABCDL, opcodeA = 01011000b, S = 1

Binary Coded Decimal (BCD) addition with carry/borrow output. Adds src1 and src2, producing a 16-bit

BCD result. Treats src1 and src2 as BCD inputs and generates the carry/borrow as described in BCD

Formats .

Writes the result to dst_lo, and 3-bit signed carry/borrow to dst_hi. Intended for extended-precision

BCD arithmetic. See example under ADDM above.

dst_hi:dst_lo = src1 + src2; // BCD

ABCDH, opcodeA = 01011001b, S = 0

Binary Coded Decimal (BCD) addition with carry/borrow input. Adds src1 and src2 along with a 3 bit

carry/borrow input in dst_lo. Treats src1 and src2 as BCD inputs and interprets the carry/borrow as

described in BCD Formats .

Writes the result to dst_lo. Intended for extended-precision BCD arithmetic. See example under ADDM

above.

dst = src1 + src2 + bcd_carry_borrow(dst_lo); // BCD

ABCM, opcodeA = 01011001b, S = 1

Binary Coded Decimal (BCD) addition with carry/borrow output and carry/borrow input. Adds src1 and

src2 along with a 3 bit carry/borrow input in dst_lo. Treats src1 and src2 as BCD inputs and interprets

the carry/borrow as described in BCD Formats .

Writes the result to dst_lo, and 3-bit signed carry/borrow to dst_hi. Intended for extended-precision

BCD arithmetic. See example under ADDM above.

dst_hi:dst_lo = src1 + src2 + bcd_carry_borrow(dst_lo); // BCD

SBCD, opcodeA = 01011010b

Binary Coded Decimal (BCD) subtract. Subtracts src2 from src1 as BCD inputs, writing the result to dst.

dst = src1 - src2; // BCD

SBCDL, opcodeA = 01011011b

Binary Coded Decimal (BCD) subtraction with carry/borrow output. Subtracts src2 from src1, producing

a 16-bit BCD result. Treats src1 and src2 as BCD inputs and generates the carry/borrow as described in

BCD Formats .

Writes the result to dst_lo, and 3-bit signed carry/borrow to dst_hi. Intended for extended-precision

BCD arithmetic. See example under ADDM above.

dst_hi:dst_lo = src1 - src2; // BCD

SBCM, opcodeA = 01011100b

Binary Coded Decimal (BCD) subtraction with carry/borrow output and carry/borrow input. Subtracts

src2 from src1 while adding a 3 bit carry/borrow input in dst_lo. Treats src1 and src2 as BCD inputs and

interprets the carry/borrow as described in BCD Formats .

Writes the result to dst_lo, and 3-bit signed carry/borrow to dst_hi. Intended for extended-precision

BCD arithmetic. See example under ADDM above.

dst_hi:dst_lo = src1 - src2 + bcd_carry_borrow(dst_lo); // BCD

SBCDH, opcodeA = 01011101b

Binary Coded Decimal (BCD) subtraction with carry/borrow input. Subtracts src2 from src1 while adding

a 3 bit carry/borrow input in dst_lo. Treats src1 and src2 as BCD inputs and interprets the carry/borrow

as described in BCD Formats .

Writes the result to dst_lo. Intended for extended-precision BCD arithmetic. See example under ADDM

above.

dst = src1 - src2 + bcd_carry_borrow(dst_lo); // BCD

I2BCD, opcodeA = 01011110b

Converts the 32-bit unsigned integer value in src1:src2 to 32-bit BCD Format in dst_hi:dst_lo. Clamps

the result to 0x99999999 .

input = (unsigned32(src1) << 16) | unsigned32(src2);

if (input > 99999999) {
 result = 0x99999999;
} else {
 d0 = (input / 1) % 10;
 d1 = (input / 10) % 10;
 d2 = (input / 100) % 10;
 d3 = (input / 1000) % 10;
 d4 = (input / 10000) % 10;
 d5 = (input / 100000) % 10;
 d6 = (input / 1000000) % 10;
 d7 = (input / 10000000) % 10;
 result = (d7 << 28) | (d6 << 24) | (d5 << 20) | (d4 << 16)
 | (d3 << 12) | (d2 << 8) | (s1 << 4) | (d0 << 0);
}

dst_hi:dst_lo = result;

BCD2I, opcodeA = 01011111b

Converts the 32-bit BCD format input in src1:src2 into a 32-bit unsigned integer in dst_hi:dst_lo.

input = (src1 << 16) | src2;

d7 = (input >> 28) & 0xF;
d6 = (input >> 24) & 0xF;
d5 = (input >> 20) & 0xF;
d4 = (input >> 16) & 0xF;
d3 = (input >> 12) & 0xF;
d2 = (input >> 8) & 0xF;
d1 = (input >> 4) & 0xF;
d0 = (input >> 0) & 0xF;

result = d7 * 10000000
 + d6 * 1000000
 + d5 * 100000
 + d4 * 10000
 + d3 * 1000
 + d2 * 100
 + d1 * 10
 + d0;

dst_hi:dst_lo = result;

CMPEQ&, opcodeA = 01100000b, S = 0

Bitwise-ANDs dst with 0 or -1 (0xFFFF) based on whether src1 equals src2.

dst &= src1 == src2 ? -1 : 0;

CMPNE&, opcodeA = 01100000b, S = 1

Bitwise-ANDs dst with 0 or -1 (0xFFFF) based on whether src1 equals src2.

dst &= src1 != src2 ? -1 : 0;

Extended Conditional Branches

CP-1600X supports a small number of extended conditional branches. These are built from the extended

addressing mode support. CP-1600X treats amode=00b, reg=111b as an extended conditional branch.

Thus, the opcode encoding looks as follows:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 00 extreg 1 opcode 0 0 0 111

offset

Opcode Field Definitions

Field Meaning

extreg External register X1 through X7 . (001b = X1 , 111b = X7 , etc.)

opcode CP-1600 instruction opcode

offset Address offset to apply in extended addressing modes (amode ≠ 0 or extreg ≠ 0)

These branches overload the meaning of the CP-1600’s arithmetic operations that target R7. That limits

the number of potential extended branches. Currently, CP-1600X defines behavior for the following

opcodes:

Opcode
Original

Mnemonic
Extended ISA

Mnemonic
Description

001 MVO - No change / reserved.

010 MVI TSTBNZ Test Xreg and branch if non-zero.

011 ADD TXSER / RXSER Specialized serial transmit/receive with branch.

100 SUB - No change / reserved.

101 CMP - No change / reserved.

110 AND - No change / reserved.

111 XOR DECBNZ Decrement Xreg and branch if non-zero.

The TSTBNZ and DECBNZ opcodes offer a single 16-bit branch destination. The TXSER / RXSER offer two

branch destinations, to cover “data available” and “serial error” cases.

TSTBNZ / DECBNZ

The TSTBNZ instruction provides a “test, and branch if zero” instruction. It takes a single extreg and

branch target as arguments. If the extreg is non-zero, it branches to the target address. This instruction

does not modify the CP-1600 flags.

The DECBNZ instruction operates similarly; however, it decrements the extreg before testing it. Because

DECBNZ is built from XOR , it will modify the CP-1600 Sign and Zero flags based the address the CPU

arrives at.

The offset in the second word of the instruction is indeed an offset, and not an absolute address.

It’s not clear at the time of writing whether these instructions take 10 or 11 cycles. (Most likely, 11

cycles). This is still faster than a typical, native test/branch or decrement/branch (15 cycles).

TXSER / RXSER

These instructions are intended to speed up serial I/O when used with an actual Locutus cartridge. They

are not supported in jzIntv, and may not be supported in a JLP-style setting.

The instructions have the following syntax:

 TXSER extreg , no_data , error
 RXSER extreg , no_data , error

Here, extreg is one of X1 through X7 . no_data and error are labels.

These instructions combine data transfer between the serial port and an extreg with a three-way branch.

The TXSER / RXSER instructions always do one of the following:

1. Transfer data between serial port and extreg and fall through tothe next instruction, or

2. Branch to the no_data label if no data is available, or

3. Branch to the error label if a serial error occurred.

The two branch offsets, as well as RXSER vs. TXSER are encoded into the offset field as follows. RT = 0

means RXSER ; RT = 1 means TXSER .

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 00 extreg 1 011 0 0 0 111

error offset 0 no_data offset RT

Programmer’s Guide
This section provides additional insight on how the CP-1600X instructions support various uses.

Extended Precision Addition and Subtraction

Extended Precision Integer Addition

The ADDU , ADDM , and ADDH instructions work together to provide an extended-precision addition facility.

The ADDU instruction starts the addition, writing a carry its dst_hi. The ADDM instruction consumes the

carry, and produces a new carry in its dst_hi. The ADDH instruction terminates the addition, consuming

the final carry but producing none of its own.

The following example adds the 64-bit value in X3:X2:X1:X0 to X7:X6:X5:X4 , placing the result in

XB:XA:X9:X8 .

 ADDU X0, X4, X8 ; writes to X9:X8
 ADDM X1, X5, X9 ; consumes carry in X9, writes to XA:X9
 ADDM X2, X6, XA ; consumes carry in XA, writes to XB:XA
 ADDH X3, X7, XB ; consumes carry in XB, writes to XB

One downside of this design is that you cannot really perform “in-place” accumulation, as the carry flag

always occupies the adjacent register to the sum. Two DMOV instructions can clean this up:

 DMOV X9, X8, X4 ; copies X9:X8 to X5:X4
 DMOV XB, XA, X6 ; copies XB:XA to X7:X6

Word of caution: As each of these instructions is non-interruptible, you may need a NOP or other

interruptible instruction somewhere in the sequence for a 64-bit or higher precision addition.

A 32-bit extended precision addition only requires ADDU and ADDH , and at most one DMOV if you wish to

retain the 32-bit value in its starting registers:

; Add X1:X0 + X3:X2 => X3:X2, using X5:X4 as temporaries
 ADDU X0, X2, X4 ; writes to X5:X4
 ADDH X1, X3, X5 ; consumes carry in X5; writes to X5
 DMOV X5, X4, X2 ; copies X5:X4 to X3:X2

These instructions are mainly useful for extended precision values that live for extended periods of time

in extregs. For values that primarily live in RAM, the native CPU instructions with ADD@ / ADCR may be a

better choice, as CP-1600X does not yet have an efficient mechanism to MVI@ or MVO@ to/from an

extreg.

Extended Precision Integer Subtraction

Extended precision subtraction follows the same pattern as extended precision addition. Rather than

writing a carry result to the second register, however, the SUBU and SUBM instructions write a borrow

instead. That is, the output is 0 if there was no borrow, or -1 (0xFFFF) if there was a borrow.

The following example subtracts the 64-bit value in X3:X2:X1:X0 from X7:X6:X5:X4 , placing the

result in XB:XA:X9:X8 .

 SUBU X4, X0, X8 ; writes to X9:X8
 SUBM X5, X1, X9 ; consumes borrow in X9, writes to XA:X9
 SUBM X6, X2, XA ; consumes borrow in XA, writes to XB:XA
 SUBH X7, X3, XB ; consumes borrow in XB, writes to XB

The equivalent 32-bit example, subtracting X1:X0 from X3:X2 , writing to X5:X4 :

 SUBU X2, X0, X4 ; writes to X5:X4
 SUBH X3, X1, X5 ; consumes carry in X5; writes to X5

Extended Precision BCD Addition and Subtraction

The BCD addition and subtraction instructions follow the same pattern as the integer versions. Because

the BCD instructions define their carry/borrow differently, and because the BCD representation is

inherently unsigned, the mnemonic for the first instruction of each sequence ends in an ‘L’ rather than a

‘U’.

ABCD stands for “Add Binary Coded Decimal”, while SBCD stands for “Subtract Binary Coded Decimal”.

Therefore, these examples look very similar to the ADD/SUB examples above, with ADD/SUB replaced by

ABCD/SBCD, and the ‘U’ rewritten to ‘L’.

Adding the 16-digit (64-bit) BCD value in X3:X2:X1:X0 to X7:X6:X5:X4 , placing the result in

XB:XA:X9:X8 , looks as follows:

 ABCDU X0, X4, X8 ; writes to X9:X8
 ABCDM X1, X5, X9 ; consumes carry in X9, writes to XA:X9
 ABCDM X2, X6, XA ; consumes carry in XA, writes to XB:XA
 ABCDH X3, X7, XB ; consumes carry in XB, writes to XB

Adding the 8-digit (32-bit) BDC value in X1:X0 to X3:X2 with the result in X5:X4 looks as follows:

 ABCDU X0, X2, X4 ; writes to X5:X4
 ABCDH X1, X3, X5 ; consumes carry in X5, writes to X5

Subtracting the 16-digit (64-bit) BCD value in X3:X2:X1:X0 from X7:X6:X5:X4 , placing the result in

XB:XA:X9:X8 , looks as follows:

 SBCDU X4, X0, X8 ; writes to X9:X8
 SBCDM X5, X1, X9 ; consumes borrow in X9, writes to XA:X9
 SBCDM X6, X2, XA ; consumes borrow in XA, writes to XB:XA
 SBCDH X7, X3, XB ; consumes borrow in XB, writes to XB

Subtracting the 8-digit (32-bit) BDC value in X1:X0 from X3:X2 with the result in X5:X4 looks as follows:

 SBCDU X0, X2, X4 ; writes to X5:X4
 SBCDH X1, X3, X5 ; consumes borrow in X5, writes to X5

Revision History

Date Notes

17-Nov-2019, A Initial, partially complete release. Most, but not all, instructions described.

17-Nov-2019, B Fix a couple minor errors, typos.

19-Nov-2019, A
Remaining 3-op extended ISA, description of BCD operand types, and minor
fixes; still to-do: TSTBNZ , DECBNZ , TXSER , RXSER , and full description of BCD
arithmetic.

3-Dec-2019, A

Added short description of PV and register pairs; added diagram to ATAN2;
started “Programmer’s Guide” section and migrated extended precision, BCD
documentation there; fixed a number of instruction descriptions and
mnemonics to align with macro file.

