

Locutus Universal

Intellivision Game

Image (LUIGI)

V1.0

6-Jul-2019, A

Copyright © 2019 — Joseph Zbiciak — Left Turn Only

2

Background 5

Design Criteria 5

Nomenclature 5

LUIGI Memory Organization Terminology 6

LUIGI File Format 7

LUIGI File Header 7

Version 0 Header (16 bytes) 7

Version 1 Header (32 bytes) 7

Feature Flags 8

Compatibility Flags 9

Compatibility Field Version Number 10

JLP Flags 10

JLP Accelerator Enable 10

JLP Flash Save Game Size 11

Source Material UID Field (Version 1 and later) 11

Header Checksum: DOWCRC 12

Block Header 12

Block Types 12

Block Type 0x00: Start Encryption 13

Block Type 0x01: Memory Mapping, Permissions, and Page Flipping Tables 13

Memory Mapping Table 13

Permissions Table 14

Page Flipping Table 15

Mattel Page Flip Special Case Address Ranges 16

Interaction between Intellicart-style Bankswitching and Mattel-style Page Flipping 16

Block Type 0x02: Data Hunk 17

8-bit Data Block: 2 + N bytes 17

10-bit Data Block: 2 + ((N + 2) >> 2) + N bytes 17

16-bit Data Block: 1 + 2*N bytes 18

Reserved Encodings 18

Implementation Notes / Observations 18

Encoding Example Code 19

Encoded Example 20

Encoding Efficiency Analysis 20

Block Type 0x03: Program Metadata 21

Metadata Tags 22

Block type 0xFF: End of Data 23

3

Reference Material 24

Reference Implementation: IEEE 802.3 CRC32 24

Reference Implementation: DOWCRC 25

Reference Implementation: Castagnoli, Brauer, Hermann CRC32/4 26

CFGVAR Reference 27

CFGVAR Value Type: String 29

CFGVAR Value Type: Number 29

CFGVAR Value Type: Date String 29

Date String Formats 29

Date String Field Definitions 30

CFGVAR Value Type: Compat 30

CFGVAR Value Type: ECS Enable 31

CFGVAR Value Type: Voice Enable 31

CFGVAR Value Type: INTV2 Compat 31

CFGVAR Default Values 31

Recommended License Strings 32

Intellicart Bankswitching Reference 33

Address Spaces 33

[mapping] Data Segments: Non-Bankswitched Address Ranges 33

[bankswitch] Segments: Bankswitched Address Ranges 33

[preload] Data Segments 34

[memattr] Segments 34

Bankswitch Registers 36

Locutus Intellicart Bankswitch Implementation 36

Intellicart RAM to Locutus RAM Mapping 36

Mapping ROM Features onto LUIGI 37

Bankswitch Attribute Lookup and Execution 37

Mattel Page Flipping Reference 38

CFG File Syntax 38

Flipping a Page Mattel Style 38

Empty Pages 38

Reset Behavior 38

Page Flip Attribute Lookup and Execution 38

Flipped Pages in Locutus RAM 39

Revision History 41

4

Background
LUIGI is the on-flash format Locutus stores games in. The LUIGI format unifies the BIN+CFG and ROM

formats. It simultaneously supports Mattel-style page flipping and Intellicart-style bankswitching. It also

provides unique native features.

Design Criteria

LUIGI aspires to the following goals:

● Compact.​ Most games are a multiple of 4K words. Locutus allocates storage in 8K blocks. LUIGI

avoids taking more blocks than needed by encoding data efficiently.

● Simple.​ The decoder runs in a constrained environment that is difficult to debug, and has few

resources available—especially RAM.

● Robust against transmission and storage errors.​ The format should detect bit errors, and

possibly be able to recover from single-bit errors.

● Support all the things!

○ Support Mattel page flipping.

○ Support Intellicart bankswitching.

○ Support the full 1MB of Locutus RAM, and perhaps larger RAMs in the future.

Nomenclature

● Page flipping:​ The Mattel technique for selecting among multiple 4K pages of ROM in a 4K

window of memory.

● Bankswitching:​ The Intellicart technique for mapping various ranges of Intellicart RAM into one

or more 2K-word half-pages.

● Little Endian:​ This stores quantities larger than one byte as a sequence of bytes starting with the

least-significant bits. For example, it stores the 32-bit quantity ​0xAABBCCDD​ as ​0xDD​, ​0xCC​,
0xBB​, ​0xAA​. LUIGI stores all multi-byte quantities in little endian.

● Big Endian:​ This stores bytes in the opposite order as Little Endian. The BIN format stores

words in Big Endian order.

Aside​: Many resources use the terms ​page flipping​ and ​bankswitching​ interchangeably. This document

specifically assigns ​page flipping​ to the Mattel model and ​bankswitching​ to the Intellicart model. This is

consistent with the history of both schemes: The ​Intellicart​ uses the ​[bankswitch]​ CFG section to

indicate an Intellicart bankswitched segment. ​Mattel’s documentation​ refers to its own strategy as

paged ROMs.

5

http://wiki.intellivision.us/index.php?title=Intellicart&oldid=14818
http://papaintellivision.com/pdfs/CCF10232011_00026.pdf

LUIGI Memory Organization Terminology

Term Meaning

byte 8 bits

word 16 bits

paragraph (para) 256 words

half-page 2K words (8 paragraphs)

page 4K words (16 paragraphs)

chapter (chap) A group of pages that map to the same 4K address range.

6

LUIGI File Format
The LUIGI format consists of the following major sections:

● LUIGI File Header​.
● Memory Mapping​, ​Permissions​, and ​Page Flipping​ Tables.

● Data Hunks​.
● Optional ​Program Metadata​.

The LUIGI format takes some inspiration from the PNG file format. It consists of a sequence of largely

independent data blocks, each with a generic local header. This allows us to extend the format in the

future as needed, while allowing older tools to process the parts they understand while ignoring (or

passing through) the new block types.

The LUIGI file header has a fixed format that is not block oriented. This header identifies the file as a

LUIGI file along with the LUIGI version. It also provides a set of feature flags, as described below.

LUIGI File Header

Version 0 Header (16 bytes)

Version 0 LUIGI files existed through the early part of Locutus development. This version was officially

retired during beta testing. It is documented here for posterity.

Bytes Field Details

0 2 Magic Number Fixed value ​0x4C 0x54 0x4F​, which is ASCII “​LTO​”.

3 Version Fixed value ​0x00​.

4 11 Feature Flags
A 64-bit vector of feature flags. Corresponds 1:1 to first 64 feature
flags in Version 1 LUIGI files.

12 14 Reserved Fill with ​0x00​.

15 Header Checksum CRC over entire header.

Version 1 Header (32 bytes)

Version 1 LUIGI files represent the production version of LUIGI. Version 1 differs from version 0 in the

following ways:

● Extends feature flags from 64 bits to 128 bits.

● Adds source-material checksums.

7

Bytes Field Details

0 2 Magic Number Fixed value ​0x4C 0x54 0x4F​, which is ASCII “​LTO​”.

3 Version Fixed value ​0x01​.

4 19 Feature Flags A 128-bit vector of feature flags.

20 27 Unique ID (UID) A unique identifier derived from the source material.

28 30 Reserved Fill with ​0x00​.

31 Header Checksum CRC over entire header.

Feature Flags

The LUIGI format provides room for up to 128 feature flag bits. LUIGI reserves undefined feature flags.

Programs that directly generate new LUIGI files should set reserved fields to 0. Programs that

manipulate existing LUIGI files should preserve the contents of reserved fields, to allow forward

compatibility.

Bits Description CFGVAR 1 Category

0 1 Intellivoice compatibility voice_compat

Compatibility

2 3 ECS compatibility ecs_compat

4 5 Intellivision 2 compatibility intv2_compat

6 7 Keyboard Component compatibility kc_compat

8 9 Compatibility field version number -

10 11 TutorVision compatibility 2 tv_compat

12 15 Reserved for compatibility flags -

16 17 JLP Accelerator Enable jlp_accel

JLP 18 21 Reserved for JLP-related flags -

22 31 JLP Flash Save Game Size​ (in sectors) jlp_flash

32 Enable Locutus’ memory mapper at ​$1000 - $14FF 3 lto_mapper Locutus

33 62 Reserved

63
Explicit vs. Implicit feature flags:

0 = Feature flags are the ​bin2luigi​/​rom2luigi​ defaults
1 = Feature flags are explicitly set by the user via ​CFGVAR​ or other means.

64 127 Reserved (Not present in Version 0 headers.)

1 See the ​CFGVAR Reference​ for more details, including aliases for some CFGVARs.
2 Only if compatibility field version number (bits [9:8]) are ​01b​ or greater. Otherwise, this field is reserved.
3 Documented in the yet-to-be-released Locutus Programmer’s Guide.

8

Compatibility Flags

For the 2-bit compatibility fields above, LUIGI uses the following encoding:

Bit Pattern Meaning Details

00 Incompatible The device ​must not​ be present when using this program.

01 Tolerates Program operates correctly in the presence of this hardware.

10 Enhanced Program provides extra functionality when this hardware is present.

11 Requires Program requires this hardware to operate correctly.

The compatibility flag bits in the LUIGI header are descriptive, not prescriptive. They describe the

contents of the LUIGI file rather than how the LUIGI file should be processed. Locutus’ configuration

establishes the policy that interprets and acts on these fields.

For example, consider ECS Compatibility. Locutus defines the following four ECS ROM Enable policies:

Bit Pattern Name of Setting Details

00 Always ECS ROMs enabled always (Locutus does nothing).

01 Compatible ECS ROMs disabled only for known ECS-incompatible titles.

10 ECS Games ECS ROMs enabled only for known ECS-aware games.

11 Never ECS ROMs disabled unless ​absolutely​ required.

This leads to the following truth table indicating whether Locutus enables the ECS ROMs based on the

ECS compatibility field in the LUIGI file (rows) and the ECS compatibility policy (columns):

 Locutus ECS ROM Enable Policy

 Always ​(00) Compatible ​(01) ECS Games ​(10) Never ​(11)

ECS Compat.
In LUIGI file

Incompatible
(00)

ENABLED disabled disabled disabled

Tolerates
(01)

ENABLED ENABLED disabled disabled

Enhanced
(10)

ENABLED ENABLED ENABLED disabled

Requires
(11)

ENABLED ENABLED ENABLED ENABLED

9

Compatibility Field Version Number

This 2-bit field indicates how to interpret reserved bits ​[15:10]​. When set to ​00b​, bits ​[15:10]​ are

considered ​reserved​ and should be ignored.

When the Compatibility Field Version Number is ​01b​ or higher, bits ​[11:10]​ become the TutorVision

Compatibility field.

JLP Flags

JLP provides set of acceleration functions provided by the JLP cartridge board via memory mapped

registers. This includes multiplication, division, CRC, and random number generation. JLP Acceleration

also provides an 8000 × 16-bit RAM expansion at ​$8040​ - ​$9F7F​, and the ability to save program data to

flash.

Locutus emulates JLP’s capabilities. The JLP Flags tell Locutus what JLP functionality to provide.

JLP Accelerator Enable

Bit Pattern Name of Setting Details

00 Disabled JLP Acceleration support is completely disabled for this program.

01 Accelerators On
JLP Accelerators and RAM enabled at reset.
No JLP Flash support, regardless of ​JLP Flash Minimum Size​. 4

10
Accelerators Off;

Flash enabled
JLP Accelerators and RAM available, but disabled at reset.
JLP Flash supported if ​JLP Flash Minimum Size​ is non-zero.

11
Accelerators On;

Flash enabled
JLP Accelerators and RAM enabled at reset.
JLP Flash supported if ​JLP Flash Minimum Size​ is non-zero..

The Disabled setting (​00b​) disables all support for JLP Accelerators. The program will not see the JLP

Accelerators, and can not turn them on.

The remaining three settings enable support for JLP Accelerators. In settings ​01b​ and ​11b​, Locutus

makes the JLP Accelerators and associated RAM visible at reset. In setting ​10b​, Locutus does not initially

make JLP Accelerators visible; however, programs can make them visible as described below. In these

modes, Locutus stores JLP Accelerator RAM in Locutus RAM addresses ​$10040​ - ​$11F7F​.

The JLP Accelerators and associated RAM occupy a large fraction of the Intellivision address map. A

program can turn JLP Accelerators ​off​ at run-time with a special JLP-specific page flip request: write

$6A7A​ to ​$8034​. Likewise, it can turn JLP Accelerators ​on​ by writing ​$4A5A​ to ​$8033​.

4 ​bin2luigi​ upgrades ​jlp_accel​ = 1; ​jlp_flash​ > 0 to ​jlp_accel​ = 3 when encoding a LUIGI.

10

When a program enables JLP Accelerator support via flags (​jlp_accel​ >= ​01b​) but accelerators are ​off​,
CPU accesses to addresses ​$8000​ - ​$9FFF​ behave as if JLP Accelerators do not exist. Programs can 5

map other RAM or ROM into this address range—including paged memory—and access it while JLP

Accelerators are ​off​.

JLP Flash Save Game Size

The JLP boards store flash data in 1.5KB sectors divided into 8 rows of 96 words (192 bytes) each. JLP

exposes the amount of flash available through a pair of memory-mapped registers. A JLP board’s flash

capacity is determined by the total board capacity, minus the space occupied by firmware and the

program itself. Programs consult these memory-mapped registers to determine actual flash capacity.

Locutus does not have the same constraints as a JLP board. Locutus supports flash save areas up to

approximately 1MB, independent of the size of the program. The ​JLP Flash Save Game Size​ parameter

tells Locutus how much JLP Flash space to allocate. Locutus advertises its configured JLP Flash capacity

to programs in the same way JLP would. Locutus only makes JLP Flash storage available when ​JLP

Accelerator Enable​ is ​10b​ or ​11b​.

Each flash sector is 1.5KB. Locutus currently supports JLP Flash save areas up to approximately 1MB.

The maximum legal value for ​JLP Flash Save Game Size​ is ​682 sectors​. (682 × 1536 = 1,047,552 bytes)

Source Material UID Field (Version 1 and later)

The UID field assists in identifying the source material that corresponds to a particular LUIGI.

● bin2luigi​:
○ Original BIN’s CRC32 followed by original CFG’s CRC32.

○ If no CFG provided, CFG CRC = ​0x00000000​.
● rom2luigi​:

○ Original ROM’s CRC32 followed by “​.ROM​” (​0x2E, 0x52, 0x4F, 0x4D​).

Here, CRC32 refers to the standard ​IEEE 802.3 32-bit CRC​ used by tools such as ZIP. See ​Reference

Implementation: IEEE 802.3 CRC32​ for details.

Tools that directly generate LUIGI files should set this field to a unique ID derived from the source

material. This can make it easier to distinguish two otherwise similar looking LUIGI files: Two files with

different UIDs are considered different, while two files with the same UID ​may​ be the same and deserve

closer examination.

Programs that set the UID should compute it in such a way that the ​same​ input produces the ​same​ UID,

while two ​different​ inputs are highly likely to produce ​different​ UIDs, much like a good hash function.

Locutus itself does not use the UID field for any purpose.

5 Other than writing ​$4A5A​ to ​$8033​.

11

Header Checksum: DOWCRC

Both version 0 and version 1 use DOWCRC from ​Koopman & Chakravarty’s paper​ for the header

checksum. The checksum covers the entire header. See ​Reference Implementation: DOWCRC​ for

details.

Block Header

Each data block after the header consists of a short, fixed header followed by an optional payload. The

block header fields are designed to allow skipping blocks without examining their payloads.

Bytes Field Details

0 Block Type Single byte field indicating the block type.

1 2 Payload Length Length of the payload associated with this block: 0 .. 65535 bytes.

3 Header Checksum DOWCRC checksum​ over { Block Type, Payload Length }.

4 7 Payload Checksum CRC32/4 checksum​ for the payload. (Details below.)

8 ? Payload (optional) Optional payload data associated with this block.

The payload CRC implements CRC32/4 from ​Castagnoli, Brauer, Hermann​. This polynomial generates

checksums with a minimum Hamming distance of 4 on all payloads up to 2​31​ - 1 bits, and a minimum

Hamming distance of 6 on all payloads up to 5275 bits. See ​Reference Implementation: Castagnoli,

Brauer, Hermann CRC32/4​ for details.

Block Types

LUIGI defines the following block types. Other block types are reserved.

Block Type Description

0x00 Start Encryption

0x01 Memory Mapping, Permissions, and Page Flipping Tables

0x02 Data Hunk

0x03 Program Metadata

0xFF End of Data

12

https://users.ece.cmu.edu/~koopman/roses/dsn04/koopman04_crc_poly_embedded.pdf
http://ieeexplore.ieee.org/document/231911/

Block Type ​0x00​: Start Encryption

This block introduces the start of encryption for encrypted LUIGI files.

The first 16 bytes of payload indicate the Device Random Unique IDentifier (DRUID) that the LUIGI file

was encrypted for. If the DRUID is all zeros, then the LUIGI is encrypted to run on all Locutus devices.

The remainder of the payload as well as the remainder of the file (including block headers) is encrypted,

and therefore cannot be parsed without decrypting it. Therefore, tools that encrypt LUIGI files should

move any ​metadata blocks​ ahead of this block, so that metadata remains visible after encryption.

Currently, Left Turn Only handles all encryption in-house. To encrypt a program, contact Left Turn Only.

Block Type ​0x01​: Memory Mapping, Permissions, and Page Flipping Tables

This block provides the initial memory mapping and permissions for the entire memory map. The data

payload for this block contains three fixed length tables:

1. Memory Mapping Table​ (512 bytes).

2. Permissions Table​ (256 bytes).

3. Page Flipping Table​ (512 bytes).

This block type should appear exactly once in a LUIGI file, and must be exactly 1280 bytes.

Memory Mapping Table

Each entry in this table corresponds to a ​256 word​ ​paragraph (para)​ in the Intellivision memory map,

mapping that para to a 256 word window in the Locutus external RAM. Each entry is 1 word (16 bits).

Locutus maps memory accesses to each para’s address range to a range in Locutus’ external RAM by

concatenating the 16-bit value in this table to the lower 8 bits of the Intellivision address. This generates

a 24-bit effective address. Expressed as pseudo-C code:

para = (intv_addr >> 8) & 0xFF; // ​Extract para from Intellivision address
mmap_addr = mmap_tbl[para]; // ​Look up memory mapping (16 bits)
locu_addr = (mmap_addr << 8) | (intv_addr & 0xFF); // ​Concatenate address bits

Locutus stores two copies of the memory mapping table internally: ​initial​ and ​active​. It updates the

active memory mapping table at runtime in response to bankswitch and page-flip requests. When

Locutus sees a console reset, it copies the initial memory mapping table to the active table. This

reinitializes the program’s memory map and restores page-flips and bankswitches to their initial state.

13

Memory mapping caveats:

● Locutus only has a 19-bit address space.​ Locutus ignores the upper 5 bits of the generated

address. Forward-compatible games must put zeros in the additional address bits so that future

cartridges can provide greater memory capacity.

● Forbidden Intellivision addresses.​ Locutus does not allow programs to map ​readable​ memory

into the following address spaces. It ignores reads to the following addresses:

○ 0x0000 - 0x04FF

○ 0x1000 - 0x1FFF

○ 0x3000 - 0x3FFF

● Intellicart Bankswitching.​ The original Intellicart’s bankswitch state is undefined when the

game is loaded. The Intellicart does not change its bankswitch settings across reset. Locutus,

however, reloads its memory map across reset, including Intellicart bankswitch settings.

Permissions Table

Each entry in this table corresponds to a 256 word paragraph in the Intellivision memory map, providing

access permissions for that paragraph. Each entry is 1 byte (8 bits).

The permissions flags follow the same layout as the Intellicart ROM format:

Bit(s) Name Meaning

0 READ Readability: ​1​ = readable, ​0​ = not-readable.

1 WRITE Writability: ​1​ = writable, ​0​ = not-writable.

2 NARROW Paragraph holds Narrow (8-bit) memory.
1​ = writes only update lower 8 bits, ​0​ = writes update all 16 bits.

3 BANKSW Paragraph is Intellicart-style bankswitched memory.

4 7 n/a Reserved.

The read/write flags directly control whether Locutus responds to reads and writes in the corresponding

paragraph. These two flags are fully independent: You can create write-only memory by setting ​WRITE
= 1​ and ​READ = 0​, for instance.

The ​NARROW​ flag controls whether writes to locations in that paragraph update all 16 bits or only the

lower 8 bits. Locutus ignores this bit if ​WRITE = 0​. To create 8-bit RAM with the upper 8 bits zeroed,

pre-load zeros into the RAM space with ​data hunks​, and then mark the range as ​READ = 1​, ​WRITE =
1​, ​NARROW = 1​.

The ​BANKSW​ flag controls Intellicart bankswitching support. Intellicart bankswitching operates on

2K-word ​half-pages.​ Locutus only examines paragraphs that reside on 2K half-page boundaries to

decide whether to remap memory in response to an Intellicart bankswitching write.

14

For example, a write to location ​$004C​ requests an Intellicart bankswitch on addresses ​$C000​ - ​$C7FF​.
Locutus examines the ​BANKSW​ permission bit associated with address ​$C000​‘s paragraph to determine

whether to act on that write. It ignores the ​BANKSW​ permission bits associated with addresses ​$C100​ -
$C7FF​. See ​Intellicart Bankswitching Reference​ for more details.

As with the memory mapping table, Locutus stores two copies of the permissions table internally: ​initial

and ​active​. Locutus updates the active permissions table at run time in response to page-flips. When

Locutus sees a console reset, it copies the initial permissions table to the active permissions table. This

reinitializes the program’s memory permissions to their initial state.

Page Flipping Table

The page flipping table holds 256 entries, organized as 16 sets of 16 entries—aka. 16 ​chapters​ of 16

pages​. Each set of 16 entries provides mappings for up to 16 4K-word pages associated with a 4K range

of the Intellivision address map. Each entry in this table is 1 word (16 bits), divided into three fields:

Bits Name Description

0 READ Readability: ​1​ = readable, ​0​ = not-readable.

1 WRITE Writability: ​1​ = writable, ​0​ = not-writable.

2 NARROW
 Page holds “narrow” (8-bit) memory.
 ​1​ = writes only update lower 8 bits, ​0​ = writes update all 16 bits.

3 PFE Page-Flip Enable: Enable Mattel-style page flipping on this page.

4 15 Upper Address Upper 12 address bits of the Locutus RAM address for the page.

The Page-Flip Enable (​PFE​) determines whether Locutus responds to page-flip requests in this address

range. It should be set consistently across all pages within a given chapter. Locutus examines the ​PFE

bit for the ​target​ page to decide whether to page-flip.

On a ​Mattel-style page-flip,​ Locutus uses the upper address bits to initialize the memory mapping bits

for every paragraph in the corresponding 4K page. Each paragraph’s memory mapping includes 16

upper address bits. Locutus copies the Upper Address field to bits ​[15:4]​ of the memory mapping, and

initializes bits ​[3:0]​ to the paragraph number within the page.

Locutus copies the 3 permission bits to the paragraph permission flags for all paragraphs within that

page. These 3 bits precisely correspond to bits ​[2:0]​ of the permissions table entry. Locutus sets bits

[7:3]​ to ​0​. This clears ​BANKSW​, which is stored in bit 3.

In the Mattel scheme, all page-flipped program ROMs flip to Page 0 at reset. Locutus implements this by

reinitializing the memory map and permissions from the ​Initial Memory Mapping​ and ​Initial Permissions

tables. To mimic Mattel’s scheme, set these tables consistently so they switch to Page 0 on all Mattel

page-flipped pages.

15

Locutus does not modify the page flipping table at run time. It only maintains one copy of the page

flipping table.

Mattel Page Flip Special Case Address Ranges

Page Behavior

$0xxx Page flip requests ignored.

$1xxx Page flip requests ignored unless:
● lto_mapper = 0
● lto_mapper = 1​, and ​WRITE​ = 1 for ​$1F00​ - ​$1FFF​.

$4xxx Page flip requests only affect ​$4800​ - ​$4FFF​, to accommodate ECS RAM at ​$4000​ -
$47FF​. The target page in Locutus RAM occupies the upper 2K of a 4K-aligned segment.

$8xxx Page flip requests ignored if JLP Accelerators are currently active: Writes to ​$8FFF
modify JLP RAM at ​$8FFF​, while write to ​$9FFF​ are ignored.

$9xxx

Interaction between Intellicart-style Bankswitching and Mattel-style Page Flipping

The Mattel and Intellicart schemes work very differently from each other. In the Mattel scheme, each

4K page in the address map may have multiple 4K ROM pages mapped to it. The Intellicart scheme

exposes a 64K-word backing RAM through one or more flexible 2K-word half-pages in the Intellivision

address map. Locutus attempts to make the two schemes coexist.

The active ​Permissions Table​ determines whether a given 2K half-page responds to Intellicart

bankswitch requests. To establish Intellicart bankswitched segments, set the ​BANKSW​ bit in the

corresponding paragraphs.

The active ​Page Flipping Table​ determines whether a given 4K page responds to Mattel-style page-flip

requests. To establish a Mattel-style page-flipped segment, set the ​PFE​ bit in the corresponding Page

Flipping Table entry.

As long as nothing sets ​BANKSW​ and ​PFE​ within the same 4K Intellivision address range, the two

schemes do not interact. If a program ​does​ set both bits within an overlapping address range, Locutus

honors ​BANKSW​ until the first page flip. Locutus clears ​BANKSW​ on a page-flip. This disables

bankswitching on that range until something sets ​BANKSW​ again.

Locutus’ behavior across reset differs somewhat from the Intellicart or CC3. The Intellicart and CC3

leave their bankswitched segments ​undefined​ at startup, although in practice they don’t change across

reset. In order to support Mattel-style page flipping, Locutus reinitializes its memory mappings to the

initial mapping and permissions tables across Intellivision reset. This also resets the Intellicart

bankswitched segments.

16

Block Type ​0x02​: Data Hunk

Data hunks provide 16-bit data intended to populate a range of Locutus external RAM. LUIGI packs the

data hunk with a scheme that limits the cost of large stretches of 8-bit and 10-bit data, such as is

typically found in Intellivision games.

A data hunk payload consists of:

● 3 byte address (24-bit word address)

● Packed data

The data hunk header specifies the ​encoded​ payload length. The ​decoded​ word length is implicit in the

encoded data.

The packed data consists of a series of blocks of the following types:

● 8-bit data block

● 10-bit data block

● 16-bit data block

A start byte introduces each block. It indicates the block type and length. Each block type specifies how

to translate the start byte to the block length.

8-bit Data Block: 2 + N bytes

● Start byte: ​0x01​ to ​0x3F

○ N = start_byte​.
● N-1​ 8-bit data bytes.

● One 16-bit word, LS-byte first.

10-bit Data Block: 2 + ((N + 2) >> 2) + N bytes

● Start bytes: ​0x40​ to ​0xBF
○ N = start_byte - 0x3F

● ceil((N - 1) / 4)​ data packets of the following form:

○ MSBs byte:

■ Bits ​[7:6]​ are MSBs for 1st decle

■ Bits ​[5:4]​ are MSBs for 2nd decle

■ Bits ​[3:2]​ are MSBs for 3rd decle

■ Bits ​[1:0]​ are MSBs for 4th decle

○ Up to 4 more data bytes providing LSBs of decles

○ Last packet is ​short​—no 2nd, 3rd, or 4th byte—if ​N-1​ is not a multiple of 4.

● One 16-bit word, LS-byte first.

17

16-bit Data Block: 1 + 2*N bytes

● Start byte: ​0xC0​ to ​0xFD
○ N = start_byte - 0xBF

● N​ 16-bit words, LS-byte first

Reserved Encodings

● Start bytes ​0x00​, ​0xFE​, and ​0xFF​ are reserved for future expansion.

Implementation Notes / Observations

Each block type terminates with a 16-bit word. This reduces the overhead due to occasional 16-bit

words that appear in otherwise mostly 10-bit program code, such as 16-bit immediate constants in the

middle of a stream of 10-bit opcodes.

8-bit blocks exist to compress text and graphic data that is only 8 bits wide. 8-bit blocks provide a net

benefit even with fairly short strings. A single 8-bit value followed by a 16-bit word takes 4 bytes to

encode (start byte, data byte, trailing word). That uses fewer bytes than opening an equivalent 10-bit or

16-bit block.

18

Encoding Example Code

 0240 0100 MVO R0, $100

 0040 SWAP R0

 0240 0101 MVO R0, $100 + 1

 02B8 7A5F MVII #$7A5F, R0

 0240 7FFF MVO R0, $7FFF

 0004 0154 0042 CALL CLRSCR

 02BC 8040 MVII #$8040, R4

 02B9 1F4F MVII #$9F8F - $8040, R1

 0004 0154 0046 CALL FILLZERO

 0002 EIS

 01C0 CLRR R0

 0240 012E MVO R0, TSKACT

 0240 0102 MVO R0, PRG_RAM_OK

 0004 0154 0030 CALL WAIT

 0001 DECLE 1

 0004 0154 0051 @@loop: CALL DO_MENU

 56A8 DECLE MAIN_MENU

 0004 0150 0366 CALL RUNQ

 0000 HLT

 0220 0009 B @@loop

19

Encoded Example

46 10-bit block, N = 7
92 40 00 40 40 Decles 240 100 040 240
60 01 B8 Decles 101 2B8
5F 7A Word 7A5F

41 10-bit block, N = 2
80 40 Decle 240
FF 7F Word 7FFF

44 10-bit block, N = 5
12 04 54 42 BC Decles 004 154 042 2BC
40 80 Word 8040

41 10-bit block, N = 2
80 B9 Decle 2B9
4F 1F Word 1F4F

50 10-bit block, N = 17
10 04 54 46 02 Decles 004 154 046 002
66 C0 40 2E 40 Decles 1C0 240 12E 240
44 02 04 54 30 Decles 102 004 154 030
04 01 04 54 51 Decles 001 004 154 051
A8 56 Word 56A8

45 10-bit block, N = 6
1C 04 50 66 00 Decles 004 150 336 000
80 20 Decle 220
09 00 Word 0009

Encoding Efficiency Analysis

LUIGI encoded this example in 62 bytes. The original input was 39 words (78 bytes)—34 holding decles,

and 5 holding 16-bit words. The 62 byte encoded example consists of:

● 6 bytes block headers

● 56 bytes payload

If we could somehow encode the data with no framing at all—that is, pack 10-bit data so that 4 decles

takes 5 bytes, and 16-bit data takes 2 bytes—then the example above would require 53 bytes total.

LUIGI’s decle/word payload encoding is therefore nearly ideal: 56 bytes vs. 53 bytes. The block framing

on top of that incurs an additional ~11% overhead.

20

For a pure 10-bit ROM, the block framing adds less than 1.25% overhead: 2 bytes per 128 decle block. A

128 decle block encodes to 162 bytes: 159 bytes of optimally packed payload, 1 header byte, and 2 bytes

of 16-bit word.

For long 8-bit segments, the block framing overhead approaches 3.2%, since the maximum 8-bit block

size is 63 bytes. A 63-byte block of 8-bit data requires 65 total bytes: 1 header byte, 62 data bytes, and

2 bytes of 16-bit word.

For long 16-bit segments, the block framing overhead approaches 0.8%, since the maximum 16-bit block

is 62 words long. A 62-word block requires 125 bytes: 1 byte of framing, and 124 bytes holding the 62

16-bit words.

Block Type ​0x03​: Program Metadata

This block acts like an ID3 tag, providing information about the program contained in the LUIGI file. This

block is optional. Locutus currently ignores it; however, the GUI may use it to populate the menu.

If/when Locutus does parse this metadata, it will be for display purposes only. No tag affects how

Locutus interprets the game. All tags are optional.

The block payload consists of a series of sub-records. Each sub-record begins with a 1 byte tag and 1

byte length. That is followed by up to 255 bytes of data, as indicated by the length byte.

Note: ​Each tag has a maximum payload length of 255 bytes. ​bin2luigi​ and ​rom2luigi​ truncate

longer tags to fit within 255 bytes. For ​Miscellaneous​ tags,​ the 255 byte limit applies to the combined

payload comprising variable name, ​‘=’​ delimiter, and value string.

Most tags hold strings. LUIGI supports UTF-8 string data. However, Locutus’ menu software is only able

to display the ASCII subset. Therefore, the Locutus GUI may discard or modify UTF-8 characters outside

the ASCII range ​0x20​ - ​0x7E​ when populating the menu from LUIGI metadata.

Each tag may appear more than once. This allows a LUIGI to specify multiple authors, multiple release

dates, and so on.

For most tags, jzIntv and other software tracks all of the values associated with the tag. Two tags,

however—​Program Name​ (​0x00​) and ​Program Short Name​ (​0x01​)—only permit one value. If these

tags appear more than once, LUIGI does not define which instance takes precedence. The ​Single / Multi

column in the summary table below indicates which tags support single values vs. multiple values.

21

Metadata Tags

Tag Description Encoding Equivalent ​CFGVAR Single / Multi

0x00 Program Name String name Single

0x01 Program Short Name String short_name Single

0x02 Author String author Multi

0x03 Publisher String publisher Multi

0x04 Date Released Numeric year / release_date Multi

0x05 License String license Multi

0x06 Description String description Multi

0x07 Miscellaneous String (Any unmatched variable) n/a

0x08 Game Artist String game_art_by Multi

0x09 Music Composer String music_by Multi

0x0A Sound Effects Creator String sfx_by Multi

0x0B Voice Actor String voices_by Multi

0x0C Documentation Writer String docs_by Multi

0x0D Concept Creator String concept_by Multi

0x0E Box/Manual/Overlay Artist String box_art_by Multi

0x0F More Information Pointer String more_info_at Multi

LUIGI encodes unmatched ​CFGVAR​s under the ​Miscellaneous​ tag as a string of the form “​var=value​”.

It concatenates the variable name, a single ​‘=’​, and the string form of the value. This encoding is

unambiguous, as variable names cannot contain ​‘=’​.

LUIGI encodes the release date with a variable-length encoding. The date format defines 8 1-byte fields,

as shown below. The release date tag itself may hold fewer than 8 bytes. The missing bytes are

assumed to be 0. This allows the user to specify dates with different degrees of precision. For example,

a release date tag with 1 byte only specifies the release year.

Byte Meaning Valid range

0 Year - 1900 0 - 255

1 Month 1 - 12

2 Day 1 - 31

3 Hour 0 - 23

22

4 Minute 0 - 59

5 Second 0 - 60

6 Timezone Offset Hours -12 - +12

7 Timezone Offset Minutes 0 - 59

The timezone offset is given by ​Hours​*60 + ​Minutes​. ​Minutes​ is always ​positive​. LUIGI encodes the

timezone -0130 as -2 ​Hours​, +30 ​Minutes​.

The seconds field allows values as large as 60 to account for leap seconds.

Block type ​0xFF​: End of Data

This isn’t actually a block type. If the LUIGI decoder sees ​0xFF​ where it expects a block type, it stops

reading the file immediately and does not read any further.

Block type ​0xFF​ allows streaming a raw LUIGI file in environments where it’s not possible to inform the

decoder ahead of time what the actual file length is. In serial streaming applications, the sender should

not send any more bytes associated with the LUIGI after sending block type ​0xFF​.

23

Reference Material

Reference Implementation: IEEE 802.3 CRC32

● Polynomial: ​0xEDB88320​.
● Right shifting.

● Initial value: ​0xFFFFFFFF​.
● Inverted result.

uint32_t ref_ieee802_crc32_update(uint32_t crc, const uint8_t byte) {
 int i;

 crc ^= byte;

 for (i = 0; i < 8; i++) {
 crc = (crc >> 1) ^ (crc & 1 ? 0xEDB88320ul : 0);
 }

 return crc;
}

uint32_t ref_ieee802_crc32_block(const uint8_t *const block,
 const int length) {
 uint32_t crc = 0xFFFFFFFFul;
 int i;

 for (i = 0; i < length; i++) {
 crc = ref_ieee802_crc32_update(crc, block[i]);
 }

 return crc ^ 0xFFFFFFFFul;
}

Test vectors:

Input Output

0x00 0x01 0x02 0x03 0x04 0x05 0x06 0x07
0x08 0x09 0x0A 0x0B 0x0C 0x0D 0x0E 0x0F

0xCECEE288

0x4A 0x5A 0x6A 0x7A 0x9B04D72C

0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x6522DF69

0xFF 0xFF 0xFF 0xFF 0xFF 0xFF 0xFF 0xFF 0x2144DF1C

24

Reference Implementation: DOWCRC

This CRC is described in ​Koopman & Chakravarty’s paper​.

● Polynomial: ​0x98​.
● Right shifting.

● Initial value: ​0x00​.
● Non-inverted result.

uint8_t ref_dowcrc_update(uint8_t crc, const uint8_t byte) {
 int i;

 crc ^= byte;

 for (i = 0; i < 8; i++) {
 crc = (crc >> 1) ^ (crc & 1 ? 0x98 : 0);
 }

 return crc;
}

uint8_t ref_dowcrc_block(const uint8_t *const block, const int length) {
 uint8_t crc = 0;
 int i;

 for (i = 0; i < length; i++) {
 crc = ref_dowcrc_update(crc, block[i]);
 }

 return crc;
}

Test vectors:

Input Output

0x00 0x01 0x02 0x03 0x04 0x05 0x06 0x07
0x08 0x09 0x0A 0x0B 0x0C 0x0D 0x0E 0x0F

0x00

0x4A 0x5A 0x6A 0x7A 0xB8

0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00

0xFF 0xFF 0xFF 0xFF 0xFF 0xFF 0xFF 0xFF 0x84

25

https://users.ece.cmu.edu/~koopman/roses/dsn04/koopman04_crc_poly_embedded.pdf

Reference Implementation: Castagnoli, Brauer, Hermann CRC32/4

This CRC is described in ​Castagnoli, Brauer, Hermann​.

● Polynomial: ​0x82F63B78​.
● Right shifting.

● Initial value: ​0x00000000​.
● Non-inverted result.

uint32_t ref_crc32_4_update(uint32_t crc, const uint8_t byte) {
 int i;

 crc ^= byte;

 for (i = 0; i < 8; i++) {
 crc = (crc >> 1) ^ (crc & 1 ? 0x82F63B78ul : 0);
 }

 return crc;
}

uint32_t ref_crc32_4_block(const uint8_t *block, const int length) {
 uint32_t crc = 0;
 int i;

 for (i = 0; i < length; i++) {
 crc = ref_crc32_4_update(crc, block[i]);
 }

 return crc;
}

Test vectors:

Input Output

0x00 0x01 0x02 0x03 0x04 0x05 0x06 0x07
0x08 0x09 0x0A 0x0B 0x0C 0x0D 0x0E 0x0F

0x9BB99201

0x4A 0x5A 0x6A 0x7A 0x02CB247E

0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00000000

0xFF 0xFF 0xFF 0xFF 0xFF 0xFF 0xFF 0xFF 0xC44FF94D

26

http://ieeexplore.ieee.org/document/231911/

CFGVAR Reference

jzIntv and its related tools such as ​bin2rom​, ​rom2bin​, ​bin2luigi​, ​luigi2bin​, ​rom2luigi​, and

as1600​ make use of configuration variables (CFGVARs) to carry metadata that describes the program.

In the BIN+CFG format, these variables appear in the ​[vars]​ section of the CFG file. Likewise, ​as1600

provides the ​CFGVAR​ directive to specify a configuration variable. This specification refers to these

variables as CFGVARs.

No formal specification exists for CFGVARs. jzIntv ​et al​, however, define a set of CFGVARs they

understand and assign meaning to.

Some CFGVARs are ​multi-valued​, meaning that the CFGVAR can appear more than once to specify

multiple values for the variable. The tools track all of the provided values. This makes it possible to

specify multiple publishers, authors, release dates, and so on, when it makes sense to do so.

If a non-multi-valued CFGVAR appears more than once (either in ​CFGVAR​ directives in an assembly file,

or as variables in a ​[vars]​ section of a CFG file), one of the provided values is kept. However, ​which

value is kept is unspecified.

CFGVAR
Value
Type

Multi-
valued

Description

name String No
Name of the program. Locutus recognizes the first 60
characters.

short_name String No
Short-hand name of the program. Locutus recognizes the first
18 characters.

publisher String Yes Name of the program’s publisher.

author String Yes Author / programmer of the program.

game_art_by String Yes Artist for the in-game artwork.

music_by String Yes Composer and/or arranger for in-game music.

sfx_by String Yes Sound effects creator.

voices_by String Yes Voice actors for in-game voices.

docs_by String Yes Author of the game documentation.

concept_by String Yes Originator of the game concept. (e.g. Carol Shaw for River Raid)

box_art_by String Yes Artist for the game box, overlays, manuals, etc.

more_info_at String Yes Location (e.g. URL) where more information can be found

27

about this program.

year Number Yes The year this program was released.

release_date
Date
String

Yes The date this program was released.

build_date
Date
String

Yes The date this program was built / compiled.

license String Yes
The license under which this program is offered. See
Recommended License Strings​.

description
String Yes A description of this program.

desc

version String Yes
Version of the program. This is a freeform string that’s meant
to be used to distinguish different variations of a program.

ecs_compat Compat No The program’s compatibility with the ECS.

ecs
ECS

Enable
No

Specifies whether to enable ECS when loading this program.
jzIntv and LUIGI map this onto an ​ecs_compat​ value.

voice_compat Compat No The program’s compatibility with the Intellivoice.

voice
Voice

Enable
No

Specifies whether to enable Intellivoice when loading this
program. jzIntv and LUIGI map this onto ​voice_compat​.

intv2_compat Compat No The program’s compatibility with Intellivision II.

intv2
INTV2

Compat
No The program’s compatibility with Intellivision II.

kc_compat Compat No The program’s compatibility with the Keyboard Component.

tv_compat Compat No The program’s compatibility with the TutorVision.

lto_mapper 0 or 1 No Specifies whether to enable the LTO memory mapper.

jlp_accel
0 - 3 No

Specifies whether to enable JLP’s accelerators. See ​JLP
Accelerator Enable​ for encoding. jlp

jlp_flash Number No
Specifies minimum number of 1.5K JLP flash sectors the
program expects for JLP flash support. See ​JLP Flash Save Game
Size​ for interpretation.

28

CFGVAR Value Type: String

Strings are the most generic CFGVAR value type. Historically, the tools support ASCII strings here.

In CFG files, strings may appear in quotes. However, quotes are optional if the string does not contain

any characters from the following set, or characters outside the range ​0x21​ - ​0x7E​.

; [] $ = - , \ ​<space> <tab>

Prior to SVN revision 1862, jzIntv ​et al​ had poor support for non-printing characters in strings. As of SVN

revision 1862, jzIntv ​et al​ now ​escape​ non-printing characters when generating CFG files. When

consuming CFG files, jzIntv ​et al​ interpret escape sequences of the form ​\​nnn​, where ​nnn​ is an octal

value, and ​\x​nn​, where ​nn​ is a hexadecimal value.

As of SVN revision 1862, jzIntv ​et al​ also support UTF-8 for string-valued variables. Locutus’ built-in

menu software, however, does not understand UTF-8 characters. Programs should constrain

themselves to 7-bit ASCII for ​name​ and ​short_name​.

LUIGI limits strings to 255 bytes. ​bin2luigi​ and ​rom2luigi​ truncate strings to fit within 255 bytes.

CFGVAR Value Type: Number

This value type represent pure numeric values.

The CFG parser used by jzIntv ​et al​ performs a fuzzy match on a parsed value to determine its radix. It

interprets values that begin with a ​$​ as hexadecimal values. It interprets values that consist solely of the

digits ​0​ - ​9​ as decimal. It interprets values that consist of the digits ​0​ - ​9​ ​and​ ​A​ - ​F​ as hexadecimal.

CFGVAR Value Type: Date String

CFGVAR date strings provide variable resolution dates. At their least precise, they specify a year. At

their most precise, they specify the time down to the second, in a particular timezone specified to the

minute.

Any date string that includes more than just the year must appear in quotes. jzIntv ​et al​ also allow ​‘/’

in place of ​‘-’​ in dates; however, you cannot mix ​‘-’​ and ​‘/’​ in the date portion of the string.

Date String Formats

YYYY Year only

“​YYYY​-​MO​” Year and month

“​YYYY​-​MO​-​DD​” Year, month, and day

29

“​YYYY​-​MO​-​DD​ ​HH​” Year, month, day, and hour

“​YYYY​-​MO​-​DD​ ​HH​:​MI​” Year, month, day, hour, and minutes

“​YYYY​-​MO​-​DD​ ​HH​:​MI​:​SS​” Year, month, day, hours, minutes, and seconds

“​YYYY​-​MO​-​DD​ ​HH​:​MI​:​SS​ ​+​hh​” Year, month, day, hours, minutes, seconds, and
timezone hours

“​YYYY​-​MO​-​DD​ ​HH​:​MI​:​SS​ ​+​hhmm​” Year, month, day, hours, minutes, seconds,
timezone hours and minutes.

“​YYYY​-​MO​-​DD​ ​HH​:​MI​:​SS​ +​hh​:​mm​”

Date String Field Definitions

Field Definition

YYYY
Year. Recommend 4 digits to avoid ambiguity. Years in the range 0 to 99
will have 1900 added. Years in the range 100 to 1900 are invalid.

MO One or two digit month.

DD One or two digit day.

HH One or two digit hour in 24-hour time.

MI One or two digit minutes.

SS One or two digit seconds.

+hh
Two digit timezone hour offset.
-hh​ for timezones west of UTC, and ​+hh​ for timezones east of UTC.

mm Two digit timezone minute offset. (May be one digit if colon is present.)

CFGVAR Value Type: Compat

Compatibility CFGVARs are numeric values in the range 0 to 3. Values outside this range are undefined.

Value Meaning Details

0 Incompatible The device must not be present when using this program.

1 Tolerates Program operates correctly in the presence of this hardware.

2 Enhanced Program provides extra functionality when this hardware is present.

3 Requires Program requires this hardware to operate correctly.

30

CFGVAR Value Type: ECS Enable

The ​ecs​ CFGVAR is a 0 or 1 value that specifies whether the program requires the ECS. This CFGVAR is

inherited from INTVPC. When set to 1, INTVPC enables the ECS for the program. jzIntv ​et al​ map it onto

ecs_compat​ as follows:

ecs ecs_compat

0 1​ (Tolerates)

1 3​ (Requires)

CFGVAR Value Type: Voice Enable

The ​voice​ CFGVAR is a 0 or 1 value that specifies whether the program requires the Intellivoice. This

CFGVAR is inherited from INTVPC. When set to 1, INTVPC enables the Intellivoice for the program.

jzIntv ​et al​ map it onto ​voice_compat​ as follows:

voice voice_compat

0 1​ (Tolerates)

1 2​ (Enhanced)

CFGVAR Value Type: INTV2 Compat

The ​intv2​ CFGVAR is identical to ​intv2_compat​, except that it is restricted to the values 0 or 1. It

specifies whether the program is compatible with the Intellivision II.

intv2 intv2_compat

0 0​ (Incompatible)

1 1​ (Tolerates)

CFGVAR Default Values

jzIntv and LUIGI assign default values to a subset of the CFGVARs. That is, if the CFG leaves the variable

unspecified, these tools pick a default value. In LUIGI, the ​Explicit vs. Implicit feature flag bit​ indicates

whether these parameters were populated from the defaults.

31

CFGVAR Default Notes

ecs_compat 1​ (Tolerates) Equivalent to ​ecs = 0

voice_compat 1​ (Tolerates) Equivalent to ​voice = 0

intv2_compat 1​ (Tolerates) Equivalent to ​intv2 = 1

kc_compat 1​ (Tolerates)

tv_compat 1​ (Tolerates)

jlp_accel
0​ if ​jlp_flash = 0
2​ if ​jlp_flash > 0

If the config supplies ​exactly one​ of
jlp_accel​ or ​jlp_flash​, the ​supplied
flag influences the default value for the
omitted​ flag. jlp_flash

0​ if ​jlp_accel = 0
4​ if ​jlp_accel >= 2

Recommended License Strings

While the license CFGVAR is a free-format string, programmers should consider using the following

strings for well-known licenses. For the Creative Commons licenses, consider appending the version

number as well—e.g. ​CC BY-ND-SA ​4.0​.

License String License

GPLv2 GNU General Public License, Version 2

GPLv2+ GNU General Public License, Version 2 or later

GPLv3 GNU General Public License, Version 3

GPLv3+ GNU General Public License, Version 3 or later

BSD2 BSD 2 Clause

BSD3 BSD 3 Clause

CC CC0 Creative Commons, no restrictions

CC BY Creative Commons, attribution alone

CC BY-SA Creative Commons, attribution, share alike

CC BY-NC Creative Commons, attribution, non-commercial use

CC BY-ND Creative Commons, attribution, no derivatives

CC BY-NC-SA Creative Commons, attribution, non-commercial use, share alike

CC BY-ND-SA Creative Commons, attribution, no derivatives, share alike

32

https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://www.gnu.org/licenses/old-licenses/gpl-2.0.en.html
https://www.gnu.org/licenses/gpl-3.0.en.html
https://opensource.org/licenses/BSD-2-Clause
https://opensource.org/licenses/BSD-3-Clause
https://creativecommons.org/share-your-work/public-domain/cc0/
https://creativecommons.org/licenses/by/2.0/
https://creativecommons.org/licenses/by-sa/2.0/
https://creativecommons.org/licenses/by-nc/2.0/
https://creativecommons.org/licenses/by-nd/2.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/legalcode
https://creativecommons.org/licenses/by-nd/4.0/

Intellicart Bankswitching Reference

The Intellicart provides 64K words of RAM for programs. It also provides a memory mapping 6

scheme—that jzIntv and LUIGI refer to as ​bankswitching​—​to make all of that memory available to the

Intellivision. Refer to the official ​Intellicart documentation​ and/or the ​IntelliWiki Intellicart page​ for

additional documentation. This section contains a summary.

Address Spaces

The Intellicart operates in ​two​ address spaces: The Intellivision address space as seen by the CP1610

CPU, and the Intellicart address space. The Intellicart examines every memory access the CPU makes,

and determines:

● Whether to respond to the access.

● What address in Intellicart address space the Intellivision address maps to.

The Intellicart treats Intellivision addresses ​$0040​ - ​$005F​ specially: it places its bankswitch registers in

this address range. Writes to this address range control Intellicart bankswitching. The Intellicart does

not respond to reads in this address range.

[mapping]​ Data Segments: Non-Bankswitched Address Ranges

[mapping]​ data segments in a CFG file specify blocks of data to load and map directly into the

Intellivision address map. Each segment consists of a range of offsets in the BIN file, and a target

address to map to in the Intellivision address map. These segments are ​not​ bankswitched.

Example:

[mapping]
$0000 - $0FFF = $5000 ;​ Map first 4K words of BIN to Intellivision address ​$5000​.

For non-bankswitched addresses, the Intellicart sets the Intellicart address exactly equal to the

Intellivision address. Suppose a program maps the half-page at ​$5000​ - ​$57FF​ as non-bankswitched.

This half-page appears at ​$5000​ - ​$57FF​ in the Intellivision address map, and also resides at ​$5000​ -
$57FF​ in the Intellicart RAM.

[bankswitch]​ Segments: Bankswitched Address Ranges

[bankswitch]​ segments specify address ranges in the Intellivision address map that should be

bankswitched. The Intellicart rounds these address ranges up to half-page boundaries.

[bankswitch]​ segments do not specify any data to load. Use ​[preload]​ data segments​ (below) to

load data for use with ​[bankswitch]​ segments.

6 And CC3. This section applies equally to the Intellicart and CC3.

33

http://spatula-city.org/~im14u2c/intv/dl/IntellicartManual.booklet.pdf
http://wiki.intellivision.us/index.php?title=Intellicart&oldid=14818

Example:

[bankswitch]
$6000 - $67FF ;​ Mark Intellivision address ​$6000​ - ​$67FF​ as bankswitched.

The Intellicart remaps bankswitched Intellivision addresses to the Intellicart RAM as follows:

● Look up the bankswitch offset for this 2K half page. That is, index based on the upper 5 address

bits of the Intellivision address (bits ​[15:11]​).
● Zero out the upper 5 Intellivision address bits.

● Add the bankswitch offset to the modified Intellivision address (modulo 64K) to compute the

Intellicart address.

Pseudo-code:

half_page = (intv_addr >> 11) & 0x1F; // ​Extract half-page number (0 - 31).
bsw_offset = bsw_table[half_page] << 8; // ​Look up bankswitch offset (8 bits).
icart_addr = ((intv_addr & 0x07FF) + bsw_offset) & 0xFFFF; // ​Apply offset.

[preload]​ Data Segments

[preload]​ data segments in a CFG file specify blocks of data to load from the BIN file directly into

Intellicart RAM. Each segment consists of a range of offsets in the BIN file, and a target Intellicart RAM

address.

Example:

[preload]
$1000 - $1FFF = $3000 ;​ Preload words ​$1000​ - ​$1FFF​ from BIN into Intellicart at ​$3000​.

Unlike ​[mapping]​ data segments, ​[preload]​ data segments do not modify the Intellivision address

map. Rather, they exist solely to populate Intellicart RAM. They are useful for initializing data that

might be accessed through a bankswitched half-page later. They are also useful for initializing RAM that

is marked ​narrow, ​by pre-zeroing the upper byte.

bin2luigi​ extends the interpretation of ​[preload]​ segments. It allows preload target addresses

anywhere within Locutus’ 512K word address map (​$00000​ - ​$7FFFF​), rather than restricting to the

Intellicart’s 64K address range.

[memattr]​ Segments

[memattr]​ segments in a CFG file change the memory attributes of an Intellivision address range

without loading data into them. Each segment consists of an address range, a memory type, and

memory width. Like ​[bankswitch]​ segments, ​[memattr]​ segments only modify memory attributes

and do not load data.

34

Example:

[memattr]
$8000 - $9FFF = RAM 16 ;​ 16-bit RAM at addresses ​$8000​ - ​$9FFF​.

The Intellicart and CC3 support the memory types below. Only CC3 and Locutus support Narrow 8-bit

RAM and WOM.

Type Designation Meaning

RAM 8 Readable, Writable, Narrow (8-bit) memory

WOM 8 Writable, Narrow (8-bit) memory. (WOM = Write Only Memory)

ROM 8 Readable, Narrow memory. (ROM = Read Only Memory) 7

RAM 16 Readable, Writable memory.

WOM 16 Writable memory.

ROM 16 Readable memory.

Usage note:​ You can configure WOM underneath Intellivision components such as the GRAM, to

capture any writes made to that address range. The WOM will ​not​ interfere with other devices as it only

responds to writes.

7 The Narrow attribute is meaningless here as it only affects writes.

35

Bankswitch Registers

The Intellicart provides 32 byte-wide, write-only bankswitch registers. Each register controls the

bankswitch offset for a different 2K half-page. The Intellicart only examines bits [7:3] of each write.

Register Address Address Range Register Address Address Range

$40 $0000​ - ​$07FF $50 $0800​ - ​$0FFF

$41 $1000​ - ​$17FF $51 $1800​ - ​$1FFF

$42 $2000​ - ​$27FF $52 $2800​ - ​$2FFF

$43 $3000​ - ​$37FF $53 $3800​ - ​$3FFF

$44 $4000​ - ​$47FF $54 $4800​ - ​$4FFF

$45 $5000​ - ​$57FF $55 $5800​ - ​$5FFF

$46 $6000​ - ​$67FF $56 $6800​ - ​$6FFF

$47 $7000​ - ​$77FF $57 $7800​ - ​$7FFF

$48 $8000​ - ​$87FF $58 $8800​ - ​$8FFF

$49 $9000​ - ​$97FF $59 $9800​ - ​$9FFF

$4A $A000​ - ​$A7FF $5A $A800​ - ​$AFFF

$4B $B000​ - ​$B7FF $5B $B800​ - ​$BFFF

$4C $C000​ - ​$C7FF $5C $C800​ - ​$CFFF

$4D $D000​ - ​$D7FF $5D $D800​ - ​$DFFF

$4E $E000​ - ​$E7FF $5E $E800​ - ​$EFFF

$4F $F000​ - ​$F7FF $5F $F800​ - ​$FFFF

Locutus Intellicart Bankswitch Implementation

Intellicart RAM to Locutus RAM Mapping

Locutus maps Intellicart RAM to Locutus RAM addresses ​$00000​ - ​$0FFFF​.

The Intellicart and CC3 compute all bankswitch address translations modulo 64K. While the scheme

could​ be extended to larger address spaces, no prior implementation exists with more than 64K.

Therefore, Locutus implements the same 64K restriction, and masks all translated addresses to 16 bits.

36

Mapping ROM Features onto LUIGI

bin2luigi​ and ​rom2luigi​ adhere to the Intellicart’s rules for ​[mapping]​ and ​[preload]​ data

segments, with the following exceptions:

● bin2luigi​ allows a ​[preload]​ data segment to specify a target address anywhere in Locutus’

512K-word address map, rather than restricting to the first 64K.

● bin2luigi​ preloads ​paged data segments​ at the ​top of Locutus RAM​ rather than within the

Intellicart RAM space. Paged data segments are outside the Intellicart memory mapping model.

Bankswitch Attribute Lookup and Execution

When Locutus sees a write to an Intellicart bankswitch register (Intellivision addresses ​$40​ - $5F), it

examines the ​Permissions Table​ to determine whether to respond to the write.

The Permissions Table has 256 entries—one for each 256 word ​paragraph​. When looking up bankswitch

permissions, Locutus only looks at the first paragraph in a ​half-page.​ Locutus computes the lookup index

in a manner similar to the following pseudo-code:

// ​Get the half-page number (0-31). Decoding is squirrely due to how the Intellicart rotates the bits.
half_page = ((intv_addr & 0xF) << 1) | ((intv_addr & 0x10) >> 4);
para = half_page << 3; // ​Convert to paragraph number (0-255).
perms = perm_tbl[para]; // ​Look up permission bits.
is_banksw = (perms >> 3) & 1; // ​Extract ​BANKSW​ bit.

If the corresponding ​BANKSW​ bit is set in the Permissions Table, Locutus rewrites the appropriate entries

in the ​Memory Mapping Table​ accordingly. Pseudo-code:

if (is_banksw) {
 const uint16_t bsw_offset = intv_data;
 for (int i = 0; i < 8; i++) {
 // ​Compute memory mapping for bankswitch. Recall that ​mmap_tbl[]​ provides bits 23:8 of
 // ​the Locutus RAM address, so there’s no address shift here. The byte mask limits us to 64K.
 mmap_tbl[para + i] = (bsw_offset + i) & 0xFF;
 }
}

37

Mattel Page Flipping Reference

The Mattel page flipping scheme maps up to 16 4K pages into a single 4K page of the Intellivision

address map. LUIGI refers to these 16 pages as a ​chapter​. 8

CFG File Syntax

jzIntv and ​bin2luigi​ extend the CFG format to comprehend Mattel paged ROMs. In the ​[mapping]

section, programs indicate a paged ROM segment with the PAGE keyword, followed by a page number,

as in the following example:

[mapping]
$0000 - $0FFF = $5000 ; ​Non-paged ROM segment
$1000 - $1FFF = $E000 PAGE 0 ; ​Paged ROM segment
$2000 - $2FFF = $E000 PAGE 1 ; ​Paged ROM segment

Flipping a Page Mattel Style

In the Mattel scheme, programs request a page flip on a 4K page by writing ​$​x​A5​y​ to location ​$​x​FFF​,
where:

● x​ is the upper 4 bits of the 4K address range being flipped.

● y​ is the page (0 - 15) to flip to within the chapter.

For example, writing ​$EA51​ to location ​$EFFF​ flips to ​$E000 PAGE 1​, as ​x​ = ​$E​, and ​y​ = ​$1​.

Empty Pages

Mattel’s scheme accounts for distributed address decode, and the possibility that a given page might

not be present in a chapter. It’s perfectly legal to flip to a not-present page. Doing so does not affect

future page-flips; rather, it just deselects all present ROMs in the corresponding 4K page.

Reset Behavior

All paged ROM segments flip to page 0 at reset, regardless of whether page 0 in a given chapter is

empty. Locutus implements this behavior by copying the initial ​Memory Mapping Table​ to the active

Memory Mapping Table.

Page Flip Attribute Lookup and Execution

Locutus relies on the ​Page Flipping Table​ to determine whether to respond to a page flip request. It

looks up the Page Flip Enable (PFE) in a manner similar to the following pseudo-code in response to a

write:

8 Chapter is LUIGI’s term, not Mattel’s.

38

is_pageflip = 0; // ​Default: Not a page-flip.
if ((intv_addr & 0x0FFF) == 0x0FFF && // ​Last word on page.
 (intv_addr & 0xF000) == (intv_data & 0xF000) && // ​Written data == ​$x...
 (intv_data & 0x0FF0) == 0x0A50) { // ​Written data == ​$.A5.
 chap = (intv_addr >> 12) & 0xF; // ​Get the chapter number (‘​x​’)
 page = intv_data & 0xF; // ​Get the page number (‘​y​’)
 index = (chap << 4) | page; // ​Compute index into page-flip table
 flip = flip_tbl[index]; // ​Look up the page-flip permissions
 is_pageflip = (flip >> 3) & 1; // ​Extract the ​PFE​ bit.
}

When Locutus does detect a page-flip (​is_pageflip == 1​ in the above pseudo-code), it remaps

memory in a manner similar to the following pseudo-code:

if (is_pageflip) {
 const uint32_t flip_addr = (flip & 0xFFF0); // ​Address bits to concatenate.
 const uint8_t perms = flip & 0x7; // ​Permissions, minus ​PFE​.
 const uint16_t para = chap << 4; // ​Paragraph number, for indexing.

 // ​For most address ranges, flip all 16 paragraphs in the page.
 if (chap != 0x4) {
 for (int i = 0; i < 16; i++) {
 mmap_tbl[para + i] = flip_addr + i;
 perm_tbl[para + i] = perms;
 }
 }
 // ​For ​$4xxx​, only flip the last 8 paragraphs in the page (​$4800​ - ​$4FFF​), to avoid ECS RAM.
 else {
 for (int i = 8; i < 16; i++) {
 mmap_tbl[para + i] = flip_addr + i;
 perm_tbl[para + i] = perms;
 }
 }
}

Flipped Pages in Locutus RAM

Paged ROM segments can theoretically live anywhere in Locutus’ RAM space, so long as they start on a

4K address boundary. In the case of ​$4800​’s paged segment, each of its pages also occupies 4K words

of Locutus RAM, but only the last 2K words of each page is used by Locutus’ page flipping logic.

By default, ​bin2luigi​ collects all paged ROM segments and packs them at the top of Locutus’ RAM.

The current version of ​bin2luigi​ packs paged ROM segments along the lines of the following

pseudo-code:

39

// pg_data[chap][page]​ holds all of the collected paged data segments, if any.
// pg_perm[chap][page]​ holds the corresponding permissions.

locu_addr = 0x80000; // ​One past the last address in Locutus.

for (chap = 0xF; chap >= 0x0; --chap) { // ​Step backward by Intellivision address.
 bool has_flip = false;

 for (page = 0xF; page >= 0x0; --page) { // ​Step backward by page number.
 if (pg_data[chap][page]) { // ​Is there data at this chap/page combo?
 // ​Yes: Step backward in Locutus’ address map and load the data there.
 locu_addr -= 0x1000;
 preload_data(pg_data[chap][page], chap, page, locu_addr);

 // ​Configure the flip-table to remember this ​locu_addr​ and ​perms​.
 index = (chap << 4) | page; // ​Compute index into page-flip table.
 flip_tbl[index] =
 ((locu_addr >> 8) & 0xFFF0) // ​Upper address bits for flip.
 | (pg_perm[chap][page] & 7); // ​Remember permissions for page.

 // ​Remember that this is a page-flipped chapter.
 has_flip = true;
 }
 }

 // ​If this was a page-flipped chapter, set Page Flip Enable for all pages in the chapter.
 if (has_flip) {
 for (page = 0x0; page <= 0xF; page++) {
 index = (chap << 4) | page; // ​Compute index into page-flip table.
 flip_tbl[index] |= (1 << 3); // ​Bit 3 is the Page Flip Enable.
 }
 }
}

Once this algorithm completes, the paged ROM segments will be in increasing-chapter order and

increasing-page order within each chapter at the top of Locutus’ RAM.

40

Revision History

Date Notes

3-Apr-2019, A Initial semi-public release.

15-Apr-2019, A

Added Intellicart reference and Mattel page-flip reference sections, along with
much pseudo-code. Added CFGVAR reference section. Added encryption block
definition. Describe where JLP RAM and page-flipped segments live in Locutus
RAM. Many wording tweaks and clarifications.

15-Apr-2019, B Fix minor error in description of Intellicart bankswitch writes.

6-Jul-2019, A Minor grammar, formatting, and wording fixes.

41

